首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Weizenmann 《Physica A》2010,389(23):5416-5424
We study the effect of the dipolar coupling on the magnetic properties of two small interacting ferromagnetic particles. Each particle is a two-dimensional array of Ising spins with a central spin surrounded by a variable number of shells. The coupling between spins inside each particle is ferromagnetic and the dipolar interaction between the particles is determined as a function of the number of shells, temperature, and distance between their centers. We investigate the system by mean-field approximation and Monte Carlo simulations. The dipolar interaction is calculated in two ways, one assuming effective spins in the centers of the particles, and the other directly computing the interactions among all the pairs of spins, one in each particle. We show that the difference in the corresponding dipolar energies is a power law on the distance with exponent 5. We calculate the magnetization and susceptibility as a function of temperature, number of shells and distance between the particles’ centers. We show that the critical temperature increases with the number of spins in each particle, and it is more noticeable in the mean-field calculations than in the Monte Carlo simulations.  相似文献   

2.
We studied the magnetic properties of an antiferromagnetic small particle of Ising spins. The particle is represented by a two-dimensional array of spins, where the coupling between spins in the core is antiferromagnetic, and its surface is modelled by a shell of spins with competing interactions, simulating a spin-glass type ordering at the surface. We investigated this model by mean-field approximation and Monte Carlo simulations. The magnetic behaviour was studied as a function of the temperature and external magnetic field. Some of the experimental findings observed in real antiferromagnetic nanoparticles, like hysteresis, shifted loops and coercive field, are obtained for this model. We showed that these properties strongly depend on the degree of surface disorder.  相似文献   

3.
We examine the interplay of the Kondo effect and the RKKY interactions in electronic Griffiths phases using extended dynamical mean-field theory methods. We find that sub-Ohmic dissipation is generated for sufficiently strong disorder, leading to the suppression of Kondo screening on a finite fraction of spins, and giving rise to universal spin-liquid behavior.  相似文献   

4.
The phase transition in squaric acid is discussed on the basis of three-dimensionally coupled Ising chains, where the protons in the hydrogen bonds serve as the Ising spins. The Ising model is solved in an approximation treating the chains exactly and the interactions between them in mean-field approximation.  相似文献   

5.
We consider two ferromagnetic nanoparticles coupled via long-range dipolar interactions. We model each particle by a three-dimensional array of classical spin vectors, with a central spin surrounded by a variable number of shells. Within each particle only ferromagnetic coupling between nearest neighbor spins is considered. The interaction between particles is of the dipolar type and the magnetic properties of the system is studied as a function of temperature and distance between the centers of the particles. We perform Monte Carlo simulations for particles with different number of shells, and the magnetic properties are calculated via two routes concerning the dipolar contribution: one assuming a mean-field like coupling between effective magnetic moments at the center of the particles, and other one, where we take into account interactions among all the pairs of spins, one in each particle. We show that the dipolar coupling between the particles enhances the critical temperature of the system relative to the case in which the particles are very far apart. The dipolar energy between the particles is smaller when the assumption of effective magnetic moment of the particles is used in the calculations.  相似文献   

6.
We calculate the ground state phase diagrams of a mixed Ising model on a square lattice where spins S (± 3/2, ± 1/2) in one sublattice are in alternating sites with spins Q (± 5/2, ± 3/2, ± 1/2), located on the other sublattice. The Hamiltonian of the model includes first neighbor interactions between the S and Q spins, next-nearest-neighbor interactions between the S spins, and between the Q spins, and crystal field. The topologies of the phase diagrams depend on the values of the parameters in the Hamiltonian. The diagrams show some key features: coexistence between regions, points where two, three, four, five and six states can coexist. Besides being very useful as a way to check the low temperature limit of the finite-temperature phase diagram, often obtained by mean-field theories, the richness of the ground state diagrams for certain combinations of parameters can be used as a guide to explore interesting regions of the finite-temperature phase diagram of the model.  相似文献   

7.
《Physics Reports》1999,308(4):235-331
The Feynman–Kac theorem is applied in order to establish the infinite-volume limit behaviour of the free energy per particle of continuous n-particle quantum systems with bounded separable 2-body interactions defined in the configuration space of particle positions. The mean-field character of such systems is demonstrated.A similar technique is applied to n-particle quantum systems with separable interactions defined in the space of particle momenta and spins. Three examples of systems with separable interactions are given and solved, one of which deals with an electron gas interacting with localized impurity spins in a dilute magnetic alloy (DMA) and extension of Kondo’s resistivity formula for DMA to temperatures close to 0 K.Most of the results are generalizations or more detailed presentations of those published earlier.  相似文献   

8.
Journal of Statistical Physics - We study a block spin mean-field Ising model, i.e. a model of spins in which the vertices are divided into a finite number of blocks with each block having a fixed...  相似文献   

9.
We show that superexchange interactions in frustrated Jahn-Teller systems with transition metal ions connected by the 90 degrees metal-oxygen-metal bonds (e.g., NaNiO2, LiNiO2, and ZnMn2O4) are much different from those in materials with the 180 degrees bonds. In the 90 degrees -exchange systems spins and orbitals are decoupled: the spin exchange is much weaker than the orbital one and it is ferromagnetic for all orbital states. Though the mean-field orbital ground state is strongly degenerate, quantum orbital fluctuations select particular ferro-orbital states. We explain the orbital and magnetic ordering observed in NaNiO2 and show that LiNiO2 is not a spin-orbital liquid.  相似文献   

10.
The one-dimensional spin-1/2 XYZ ferromagnetic model in a transverse field and uniform long-range interactions among the z components of the spins is studied using the mean-field Jordan–Wigner transformation. The thermodynamic quantities results like Helmholtz free energy, the internal energy, the specific heat and the isothermal susceptibility are obtained both analytically and numerically. The phase transition of the system at a finite temperature is also discussed. Our results agree with numerical results of the XYZ spin chain by others.  相似文献   

11.
It is shown that the self-consistency condition which is the basic equation for calculating the mean-field order parameter of any mean-field model Hamiltonian can be replaced by the standard Metropolis Monte Carlo scheme. The advantage of this method is its ease of implementation for both the homogeneous mean-field order parameter and the heterogeneous one. To be specific, the mean-field version of the Ising model spin system is discussed in detail and the resulting magnetization is the same as in the case of solving the respective mean-field self-consistency equation. In addition, it is shown that if a high temperature phase of such system is quenched below critical temperature then the mean field experienced by spins develops into a network of domains in analogous way as it happens with the spins in the case of the exact many-body Hamiltonian system and the coarsening processes start to take place. To show that the introduced Metropolis Monte Carlo method works also in case of the continuous variables the order parameter for the Maier-Saupe model for nematic liquid crystals has been calculated.  相似文献   

12.
We present results of a numerical mean-field treatment of interacting spins and carriers in doped diluted magnetic semiconductors, which takes into account the positional disorder present in these alloy systems. Within our mean-field approximation, disorder enhances the ferromagnetic transition temperature for metallic densities not too far from the metal-insulator transition. Concurrently, the ferromagnetic phase is found to have very unusual temperature dependence of the magnetization as well as specific heat as a result of disorder. Unusual spin and charge transport is implied.  相似文献   

13.
14.
We use the Popov-Fedotov representation of spin operators to construct an effective action for a Kondo lattice model with quenched disorder at finite temperatures. We study the competition between the Kondo effect and frozen spin order in Ising-like spin glass. We present the derivation of new mean-field equations for the spin-glass order parameter and analyze the effects of screening of localized spins by conduction electrons on the spin-glass phase transition.  相似文献   

15.
We apply the Stein–Chen method for Poisson approximation to spin-half Ising-type models in positive external field which satisfy the FKG inequality. In particular, we show that, provided the density of minus spins is low and can be expanded as a convergent power series in the activity (fugacity) variable, the distribution of minus spins is approximately Poisson. The error of the approximation is inversely proportional to the number of lattice sites (we obtain upper and lower bounds on the total variation distance between the exact distribution and its Poisson approximation). We illustrate these results by application to specific models, including the mean-field and nearest neighbor ferromagnetic Ising models.  相似文献   

16.
We consider a class of spin systems on ℤ d with vector valued spins (S x ) that interact via the pair-potentials J x,y S x S y . The interactions are generally spread-out in the sense that the J x,y 's exhibit either exponential or power-law fall-off. Under the technical condition of reflection positivity and for sufficiently spread out interactions, we prove that the model exhibits a first-order phase transition whenever the associated mean-field theory signals such a transition. As a consequence, e.g., in dimensions d≥3, we can finally provide examples of the 3-state Potts model with spread-out, exponentially decaying interactions, which undergoes a first-order phase transition as the temperature varies. Similar transitions are established in dimensions d = 1,2 for power-law decaying interactions and in high dimensions for next-nearest neighbor couplings. In addition, we also investigate the limit of infinitely spread-out interactions. Specifically, we show that once the mean-field theory is in a unique “state,” then in any sequence of translation-invariant Gibbs states various observables converge to their mean-field values and the states themselves converge to a product measure.  相似文献   

17.
18.
We present a mean-field model of a one-component electrolyte solution where the mobile ions interact not only via Coulomb interactions but also through a repulsive non-electrostatic Yukawa potential. Our choice of the Yukawa potential represents a simple model for solvent-mediated interactions between ions. We employ a local formulation of the mean-field free energy through the use of two auxiliary potentials, an electrostatic and a non-electrostatic potential. Functional minimization of the mean-field free energy leads to two coupled local differential equations, the Poisson-Boltzmann equation and the Helmholtz-Boltzmann equation. Their boundary conditions account for the sources of both the electrostatic and non-electrostatic interactions on the surface of all macroions that reside in the solution. We analyze a specific example, two like-charged planar surfaces with their mobile counterions forming the electrolyte solution. For this system we calculate the pressure between the two surfaces, and we analyze its dependence on the strength of the Yukawa potential and on the non-electrostatic interactions of the mobile ions with the planar macroion surfaces. In addition, we demonstrate that our mean-field model is consistent with the contact theorem, and we outline its generalization to arbitrary interaction potentials through the use of a Laplace transformation.  相似文献   

19.
Using the concept of internal field, which is a useful tool in mean-field theory, we evaluate the specific heat of a system of randomly distributed Ising spins interacting via the RKKY interaction. The results are compared with other theoretical predictions and with experiments.  相似文献   

20.
We consider two limiting regimes, the large-spin and the mean-field limit, for the dynamical evolution of quantum spin systems. We prove that, in these limits, the time evolution of a class of quantum spin systems is determined by a corresponding Hamiltonian dynamics of classical spins. This result can be viewed as a Egorov-type theorem. We extend our results to the thermodynamic limit of lattice spin systems and continuum domains of infinite size, and we study the time evolution of coherent spin states in these limiting regimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号