首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

A number of phosphine selenide ligands and their gold(I) complexes of general formula R3P?Se?Au?X (where X is Cl?, Br? and CN? and R = phenyl, cyclohexyl and tolyl) were prepared. The complexes were characterized by elemental analysis, IR and 31P NMR spectroscopic methods. In the IR spectra of all complexes a decrease in frequency of P?Se bond upon coordination was observed, indicating a decrease in P?Se bond order. 31P NMR showed that the electronegativity of the substituents is the most important factor determining the 31P NMR chemical shift. It was observed that phosphorus resonance is more downfield in alkyl substituted phosphine selenides, as compared to the aryl substituted ones. Ligand disproportionation in the complex Cy3P?SeAuCN in solution to form [Au(CN)2]? and [(Cy3P?Se)2Au]+ was investigated by 13C and 15N NMR spectroscopy.  相似文献   

2.

The interaction of gold(I) thiomalate, [Autm] n with thiolated nucleosides, 6-mercaptopurine (6-MP), 6-mercaptopurine-9- g - D -riboside (6-MPR) and 2-amino-6-mercaptopurine-9- g - D -riboside (2-A-6-MPR) has been studied by 1 H and 13 C NMR spectroscopy. It has been observed that these thiolated purine bases break the [Autm] n polymer and form complexes of the type $[\rangle \!{\rm C} {{\hskip -1.7pt \openup -13pt \eqalign{\displaystyle{-\!\!-}\cr\displaystyle{-\!\!-}}\hskip -1.7pt}}\hbox{{\rm S}-{\rm Au-tm}]}$  相似文献   

3.
The phosphanoxy-substituted phosphaalkene bearing the P=C−O−P skeleton can be prepared from diphosphene Mes*P=PMes* (Mes*=2,4,6-tBu3C6H2), and their use for catalysis is of interest. In this paper, complexation of the phosphanoxy-substituted phosphaalkenes with gold are investigated, and the catalytic activity of the mono- and bis(chlorogold) complexes are subsequently evaluated. Reaction of the P=C−O−P compound with (tht)AuCl (tht=tetrahydrothiophene) showed dominant coordination on the sp3 phosphorus, and complete coordination on the sp2 phosphorus required removal of tetrahydrothiophene. Atoms In Molecules (AIM) analysis based on the X-ray structure of the mono(chlorogold) complex indicated a pseudo coordinating interaction between the gold center and the P=C unit. The bis(chlorogold) complexes displayed conformational isomerism, and catalyzed the cycloisomerization/alkoxycyclization of 1,6-enyne and for hydration of terminal alkyne without activation treatment. Even the mono(chlorogold) complexes catalyzed the alkoxycyclization reactions without a silver co-catalyst, indicating that the alcohols were effective in activating the AuCl unit.  相似文献   

4.
Mixed ligand complexes of gold(I) with various selenones and Me3P, [Me3PAuSe=C<]Cl, have been prepared and characterized by elemental analyses, i.r. and n.m.r. methods. A decrease in the i.r. frequency of the >C=Se mode of selenones upon complexation is indicative of selenone binding to gold(I) via a selenone group. An upfield shift in 13C-n.m.r. for the >C=Se resonance of selenones and downfield shifts in 31P-n.m.r. for Me3P moiety are consistent with the selenium coordination to gold(I). The steric effect as well as the basicity of Me3PAu+ plays a significant role in bonding with Se-containing ligands compared to the Et3PAu+ and Ph3PAu+ complexes.  相似文献   

5.
6.
7.
The complexation of Ag+ ions with anions of β-lactam antibiotics, such as benzylpenicilline (Bzp?) and oxacilline (Oxa?), in aqueous solution at 25°C and an ionic strength of 0.1 (KNO3) was studied potentiometrically using a silver indicator electrode. The formation constants of the complexes AgBzp (logβ = 2.21 ± 0.01), AgBzp 2 ? (logβ = 3.91 ± 0.02), Ag2Oxa+ (logβ = 4.89 ± 0.01), AgOxa (logβ = 2.88 ± 0.01), (logβ = 5.43 ± 0.01) were determined.  相似文献   

8.
The study of perfluoroalkyl metal complexes is key to understand and improve metal-promoted perfluoroalkylation reactions. Herein, we report the synthesis of the first gold complexes with primary or secondary perfluoroalkyl ligands by photoinitiated reactions between AuI organometallic complexes and iodoperfluoroalkanes. Complexes of the types LAuRF (L=PPh3 or N,N-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; RF=n-C4F9, n-C6F13, i-C3F7, c-C6F11) and [Au(RF)(Ar)I(PPh3)] (Ar=2,4,6-trimethylphenyl) have been isolated and characterized. Alkynes RFC≡CR were formed by reaction of Ph3PAuC≡CR (R=Ph, nHex) with IRF (RF=n-C4F9, i-C3F7). According to the evidences obtained, this transformation undergoes through a photoinitiated radical mechanism. AuIII complexes [Au(n-C4F9)(X)(Y)L] (X=Y=Cl, Br, I, Me; X=Me, Y=I) have been prepared or in situ generated, and their thermal or photochemical decomposition reactions have been studied.  相似文献   

9.
Trifluoromethylation of AuCl3 by using the Me3SiCF3/CsF system in THF and in the presence of [PPh4]Br proceeds with partial reduction, yielding a mixture of [PPh4][AuI(CF3)2] ( 1′ ) and [PPh4][AuIII(CF3)4] ( 2′ ) that can be adequately separated. An efficient method for the high‐yield synthesis of 1′ is also described. The molecular geometries of the homoleptic anions [AuI(CF3)2]? and [AuIII(CF3)4]? in their salts 1′ and [NBu4][AuIII(CF3)4] ( 2 ) have been established by X‐ray diffraction methods. Compound 1′ oxidatively adds halogens, X2, furnishing [PPh4][AuIII(CF3)2X2] (X=Cl ( 3 ), Br ( 4 ), I ( 5 )), which are assigned a trans stereochemistry. Attempts to activate C? F bonds in the gold(III) derivative 2′ by reaction with Lewis acids under different conditions either failed or only gave complex mixtures. On the other hand, treatment of the gold(I) derivative 1′ with BF3?OEt2 under mild conditions cleanly afforded the carbonyl derivative [AuI(CF3)(CO)] ( 6 ), which can be isolated as an extremely moisture‐sensitive light yellow crystalline solid. In the solid state, each linear F3C‐Au‐CO molecule weakly interacts with three symmetry‐related neighbors yielding an extended 3D network of aurophilic interactions (Au???Au=345.9(1) pm). The high $\tilde \nu $ CO value (2194 cm?1 in the solid state and 2180 cm?1 in CH2Cl2 solution) denotes that CO is acting as a mainly σ‐donor ligand and confirms the role of the CF3 group as an electron‐withdrawing ligand in organometallic chemistry. Compound 6 can be considered as a convenient synthon of the “AuI(CF3)” fragment, as it reacts with a number of neutral ligands L, giving rise to the corresponding [AuI(CF3)(L)] compounds (L=CNtBu ( 7 ), NCMe ( 8 ), py ( 9 ), tht ( 10 )).  相似文献   

10.
A "CO-like matrix", showing coordination analogous to that of carbonyl groups, is provided by silacalix[4]phosphinine macrocycles. Reaction with Au(I) leads to the first gold(I) complexes of macrocycles, which can be reduced with sodium or potassium to the paramagnetic gold(0) complexes (an example is shown), as evidenced by cyclic voltammetry and EPR spectroscopy.  相似文献   

11.
The thioether functionalized aminosilanes Me2Si(NH‐C6H4‐2‐SR)2 (R = Ph, Me) were lithiated with nBuLi and subsequently reacted with AgCl in the presence of PMe3 or with [AuCl(PMe3)]. In the case of Me2Si(NH‐C6H4‐2‐SPh)2 the dinuclear complexes [M2{Me2Si(NC6H4‐2‐SPh)2}(PMe3)2] (M = Ag; Au) were isolated. The analogous reactions starting from Me2Si(NH‐C6H4‐SMe)2 afforded the dinuclear gold complex [Au2{Me2Si(NC6H4‐2‐SMe)2}(PMe3)2] and the tetranuclear silver complex [Ag4{Me2Si(NC6H4‐2‐SMe)2}2(PMe3)2]. In the dinuclear compounds of the type [M2{Me2Si(NC6H4‐2‐SR)2}(PMe3)2], each of the silylamide N atoms is connected to a M(PMe3) group to give a nearly linear N–M–P arrangement with Ag–N and Au–N bonds in the range of 212.0(4)–213.3(4) pm and 205.3(3)–208.1(9) pm, respectively. [Ag4{Me2Si(NC6H4‐2‐SMe)2}2(PMe3)2] consists of a central Si2N4Ag2 ring with linearly coordinated Ag atoms (Ag‐N: 223.1(4)–222.1(4) pm) and two peripheral Ag(PMe3) units, which are connected to the amido N atoms in a chelating mode. The relatively short transannular Ag ··· Ag separation (277.6(1) pm) within the Si2N4Ag2 ring hints for argentophilic interactions. The peripheral Ag atoms are three coordinated with Ag–N distances of 233.9(4)–242.8(4) pm.  相似文献   

12.
13.
Abstract

The thermodynamic parameters for the complex formation reactions in dimethylsulfoxide (dmso) between Ag(I) and the following polyamines: N,N′-dimethylethylenediamine (dmen), N,N,N′,N′-tetramethylethylenediamine (dmen), N,N″-dimethyl-diethylenetriamine (dmdien) and N,N,N′,N″, N″-pentamethyldiethylenetriamine (pmdien) have been determined by potentiometric and calorimetric techniques at 298 K and 0.1 mol dm?3 ionic strength (NEt4ClO4). Only mononuclear complexes are formed (AgLj + j = 1,2) where the ligands act prevalently as chelate agents. All the complexes are enthalpy stabilized whereas the entropy changes counteract the complex formation. The results are discussed in terms of different basicities and steric requirements of both the ligands and the complexes formed.  相似文献   

14.
Reaction of a monosubstituted, 1,3-disubstituted, or tetrasubstituted allene with various indoles catalyzed by a 1:1 mixture of a gold(I) N-heterocyclic carbene complex and AgOTf at room temperature leads to hydroarylation with formation of 3-allyl-indoles in modest to good yield.  相似文献   

15.
Summary (Dimethyl sulphide)AuCl reacts with azoles to give adducts [LAuX]2 [L = N-methylimidazole (N-MeIm), N-ethylimidazole (N-EtIm), N-propylimidazole (N-PrIm), 2-methylbenzoxazole (2-MeBO) and 2,5-dimethylbenzoxazole (2,5-diMeBO); X = Cl or Br] which were characterized analytically and spectroscopically, including 1H-n.m.r. I.r. and Raman studies showed that the compounds were binuclear with bridging halogen atoms. A nitrogen-containing ligand was coordinated to nitrogen N(3) atom of the azole ring in monodentate fashion.  相似文献   

16.
Summary Gold(I) forms linear [AuL2]X complexes (X = Cl, Br, I or CIO4) with thioacetamide and thiobenzamide, AuLX compounds with thiobenzamide (X = CI or Br),N, N-dimethylthioformamide (X = Cl, Br or 1) andN-dimethylthioacetamide (X = CI, Br or 1). Thev(AuS) vibrations are assigned in the 320-260 cm–1 range. The i.r. spectra further suggest hydrogen bonding between the ligands and the anions. The conductivity measurements indicate dissociation of the [AuL2]X complexes (X = halide) and coordination of X in solution.Presented in part at the XIX ICCC, Prague, 1978.  相似文献   

17.
18.
Complexation of Silver(I) by Cyclic Tetramines The nature of Ag(I)-complexes with 1,4,8,11-tetraazacyclotetradecane ( 1 ), 1,5,9,13-tetraazacyclohexadecane ( 2 ) 1,5,10,14-tetraazacyclooctadencane ( 3 ) and 1,6,11,16-tetraazacycloeicosane ( 4 ) is studied. The effect of ring size on disproportionation of the Ag() cation in the presence of ligand is reported. The stability of Ag(I)-complexes with 3 and 4 in aqueous solution is determined by means of potentiometric titration.  相似文献   

19.
Optically active amidophosphite with the peripheral imino group (R)-(Et2N)2POCH2CH(Et)N=CHPh is synthesized through one-stage phosphorylation of the corresponding imino alcohol. Its reaction with [Rh(CO)2Cl]2 (at P : Rh = 1) yields the mononuclear chelate [Rh(CO)(P^N)Cl]. Structures of the compounds are determined by IR, 31P, and 13C NMR spectroscopy, mass spectrometry, and polarimetry.  相似文献   

20.
Phosphine sulfides and their gold(I) complexes with general formula R3P=S—Au—X (X = Cl, Br or CN) were prepared and characterized by elemental analyses, i.r. and 31P-n.m.r. spectroscopy. A decrease in the i.r. frequency of the P=S bond in the ligands upon complexation, is indicative of S coordination to gold (I). The 31P-n.m.r. spectra revealed that electronegativity of the substituents and angles between them were the two most important factors influencing the 31P-n.m.r. chemical shifts. The phosphorus resonance was observed to be more downfield in alkyl substituted phosphine sulfides as compared to the aryl substituted phosphine sulfides. Ligand scrambling in the Cy3P=S—Au—CN complex in solution, to form [(Cy3P=S)2Au]+ and [Au(CN)2], was investigated by 13C and 15N-n.m.r. spectroscopy. Equilibrium constants (K eq) for scrambling of the Cy3P=S—Au—CN complex and for its analogue, Cy3P=Se—Au—CN were measured by integrating the 13C-n.m.r. at 297 K and were found to be 0.147 and 1.81 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号