首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
FPU models, in dimension one, are perturbations either of the linear model or of the Toda model; perturbations of the linear model include the usual \(\beta \)-model, perturbations of Toda include the usual \(\alpha +\beta \) model. In this paper we explore and compare two families, or hierarchies, of FPU models, closer and closer to either the linear or the Toda model, by computing numerically, for each model, the maximal Lyapunov exponent \(\chi \). More precisely, we consider statistically typical trajectories and study the asymptotics of \(\chi \) for large N (the number of particles) and small \(\varepsilon \) (the specific energy E / N), and find, for all models, asymptotic power laws \(\chi \simeq C\varepsilon ^a\), C and a depending on the model. The asymptotics turns out to be, in general, rather slow, and producing accurate results requires a great computational effort. We also revisit and extend the analytic computation of \(\chi \) introduced by Casetti, Livi and Pettini, originally formulated for the \(\beta \)-model. With great evidence the theory extends successfully to all models of the linear hierarchy, but not to models close to Toda.  相似文献   

2.
We study the CP-violation effects from two types of neutrino mass matrices with (i) \((M_\nu )_{ee}=0\), and (ii) \((M_\nu )_{ee}=(M_\nu )_{e\mu }=0\), which can be realized by the high-dimensional lepton number violating operators \(\bar{\ell }_R^c\gamma ^\mu L_L (D_\mu \Phi )\Phi ^2\) and \(\bar{\ell }_R^c l_R (D_\mu {\Phi })^2\Phi ^2\), respectively. In (i), the neutrino mass spectrum is in the normal ordering with the lightest neutrino mass within the range \(0.002\,\mathrm{eV}\lesssim m_0\lesssim 0.007\,\mathrm{eV}\). Furthermore, for a given value of \(m_0\), there are two solutions for the two Majorana phases \(\alpha _{21}\) and \(\alpha _{31}\), whereas the Dirac phase \(\delta \) is arbitrary. For (ii), the parameters of \(m_0\), \(\delta \), \(\alpha _{21}\), and \(\alpha _{31}\) can be completely determined. We calculate the CP-violating asymmetries in neutrino–antineutrino oscillations for both mass textures of (i) and (ii), which are closely related to the CP-violating Majorana phases.  相似文献   

3.
We consider a class of two-dimensional Schrödinger operator with a singular interaction of the \(\delta \) type and a fixed strength \(\beta \) supported by an infinite family of concentric, equidistantly spaced circles, and discuss what happens below the essential spectrum when the system is amended by an Aharonov–Bohm flux \(\alpha \in [0,\frac{1}{2}]\) in the center. It is shown that if \(\beta \ne 0\), there is a critical value \(\alpha _{\mathrm {crit}}\in (0,\frac{1}{2})\) such that the discrete spectrum has an accumulation point when \(\alpha <\alpha _{\mathrm {crit}}\), while for \(\alpha \ge \alpha _{\mathrm {crit}}\) the number of eigenvalues is at most finite, in particular, the discrete spectrum is empty for any fixed \(\alpha \in (0,\frac{1}{2})\) and \(|\beta |\) small enough.  相似文献   

4.
We study the constraints of the generic two-Higgs-doublet model (2HDM) type-III and the impacts of the new Yukawa couplings. For comparisons, we revisit the analysis in the 2HDM type-II. To understand the influence of all involving free parameters and to realize their correlations, we employ a \(\chi \)-square fitting approach by including theoretical and experimental constraints, such as the S, T, and U oblique parameters, the production of standard model Higgs and its decay to \(\gamma \gamma \), \(WW^*/ZZ^*\), \(\tau ^+\tau ^-\), etc. The errors of the analysis are taken at 68, 95.5, and \(99.7~\%\) confidence levels. Due to the new Yukawa couplings being associated with \(\cos (\beta -\alpha )\) and \(\sin (\beta -\alpha )\), we find that the allowed regions for \(\sin \alpha \) and \(\tan \beta \) in the type-III model can be broader when the dictated parameter \(\chi _F\) is positive; however, for negative \(\chi _F\), the limits are stricter than those in the type-II model. By using the constrained parameters, we find that the deviation from the SM in \(h\rightarrow Z\gamma \) can be of \(\mathcal{O}(10~\%)\). Additionally, we also study the top-quark flavor-changing processes induced at the tree level in the type-III model and find that when all current experimental data are considered, we get \(Br(t\rightarrow c(h, H) )< 10^{-3}\) for \(m_h=125.36\) and \(m_H=150\) GeV, and \(Br(t\rightarrow cA)\) slightly exceeds \(10^{-3}\) for \(m_A =130\) GeV.  相似文献   

5.
We study D-dimensional Einstein–Gauss–Bonnet gravitational model including the Gauss–Bonnet term and the cosmological term \(\Lambda \). We find a class of solutions with exponential time dependence of two scale factors, governed by two Hubble-like parameters \(H >0\) and h, corresponding to factor spaces of dimensions \(m >2\) and \(l > 2\), respectively. These solutions contain a fine-tuned \(\Lambda = \Lambda (x, m, l, \alpha )\), which depends upon the ratio \(h/H = x\), dimensions of factor spaces m and l, and the ratio \(\alpha = \alpha _2/\alpha _1\) of two constants (\(\alpha _2\) and \(\alpha _1\)) of the model. The master equation \(\Lambda (x, m, l,\alpha ) = \Lambda \) is equivalent to a polynomial equation of either fourth or third order and may be solved in radicals. The explicit solution for \(m = l\) is presented in “Appendix”. Imposing certain restrictions on x, we prove the stability of the solutions in a class of cosmological solutions with diagonal metrics. We also consider a subclass of solutions with small enough variation of the effective gravitational constant G and show the stability of all solutions from this subclass.  相似文献   

6.
We consider two nonindependent random fields \(\psi \) and \(\phi \) defined on a countable set Z. For instance, \(Z=\mathbb {Z}^d\) or \(Z=\mathbb {Z}^d\times I\), where I denotes a finite set of possible “internal degrees of freedom” such as spin. We prove that, if the cumulants of \(\psi \) and \(\phi \) enjoy a certain decay property, then all joint cumulants between \(\psi \) and \(\phi \) are \(\ell _2\)-summable in the precise sense described in the text. The decay assumption for the cumulants of \(\psi \) and \(\phi \) is a restricted \( \ell _1\) summability condition called \(\ell _1\)-clustering property. One immediate application of the results is given by a stochastic process \(\psi _t(x)\) whose state is \(\ell _1\)-clustering at any time t: then the above estimates can be applied with \(\psi =\psi _t\) and \(\phi =\psi _0\) and we obtain uniform in t estimates for the summability of time-correlations of the field. The above clustering assumption is obviously satisfied by any \(\ell _1\)-clustering stationary state of the process, and our original motivation for the control of the summability of time-correlations comes from a quest for a rigorous control of the Green–Kubo correlation function in such a system. A key role in the proof is played by the properties of non-Gaussian Wick polynomials and their connection to cumulants  相似文献   

7.
We consider the n-component \(|\varphi |^4\) lattice spin model (\(n \ge 1\)) and the weakly self-avoiding walk (\(n=0\)) on \(\mathbb Z^d\), in dimensions \(d=1,2,3\). We study long-range models based on the fractional Laplacian, with spin-spin interactions or walk step probabilities decaying with distance r as \(r^{-(d+\alpha )}\) with \(\alpha \in (0,2)\). The upper critical dimension is \(d_c=2\alpha \). For \(\varepsilon >0\), and \(\alpha = \frac{1}{2} (d+\varepsilon )\), the dimension \(d=d_c-\varepsilon \) is below the upper critical dimension. For small \(\varepsilon \), weak coupling, and all integers \(n \ge 0\), we prove that the two-point function at the critical point decays with distance as \(r^{-(d-\alpha )}\). This “sticking” of the critical exponent at its mean-field value was first predicted in the physics literature in 1972. Our proof is based on a rigorous renormalisation group method. The treatment of observables differs from that used in recent work on the nearest-neighbour 4-dimensional case, via our use of a cluster expansion.  相似文献   

8.
The \(\alpha \) decay half-lives of hyper and normal isotopes of Po nuclei are studied in the present work. The inclusion of \(\Lambda \)N interaction changes the half-life for \(\alpha \) decay. The theoretical predictions on the \(\alpha \) decay half-lives of normal Po isotopes are compared with experimental results and are seen to be matching well with each other. The neutron shell closure at \(N = 126\) is found to be the same for both normal and hypernuclei. The Geiger–Nuttal (G–N) law for \(\alpha \) decay is unaltered in the case of hypernuclei. The hypernuclei will decay into normal nuclei by mesonic or non-mesonic decay modes. Since the half-lives of normal Po nuclei are well within the experimental limits, our theoretical results suggest experimental verification of the \(\alpha \) emission from hyper Po nuclei in a cascade process.  相似文献   

9.
We define a continuum percolation model that provides a collection of random ellipses on the plane and study the connectivity behavior of the covered set and the vacant set, the one obtained by removing all ellipses. Our model generalizes a construction that appears implicitly in the Poisson cylinder model of Tykesson and Windisch. The ellipses model has a parameter \(\alpha > 0\) associated with the tail decay of the major axis distribution; we only consider distributions \(\rho \) satisfying \(\rho [r, \infty ) \asymp r^{-\alpha }\). We prove that this model presents a double phase transition in \(\alpha \). For \(\alpha \in (0,1]\) the plane is completely covered by the ellipses, almost surely. For \(\alpha \in (1,2)\) the vacant set is not empty but does not percolate for any positive density of ellipses, while the covered set always percolates. For \(\alpha \in (2, \infty )\) the vacant set percolates for small densities of ellipses and the covered set percolates for large densities. Moreover, we prove for the critical parameter \(\alpha = 2\) that there is a non-degenerate interval of densities for which the probability of crossing boxes of a fixed proportion is bounded away from zero and one. In this interval neither the covered set nor the vacant set percolate, a behavior that is similar to critical independent percolation on \(\mathbb {Z}^2\).  相似文献   

10.
Einstein-scalar-U(2) gauge field theory is considered in a spacetime characterized by \(\alpha \) and z, which are the hyperscaling violation factor and the dynamical critical exponent, respectively. We consider a dual fluid system of such a gravity theory characterized by temperature T and chemical potential \(\mu \). It turns out that there is a superfluid phase transition where a vector order parameter appears which breaks SO(3) global rotation symmetry of the dual fluid system when the chemical potential becomes a certain critical value. To study this system for arbitrary z and \(\alpha \), we first apply Sturm–Liouville theory and estimate the upper bounds of the critical values of the chemical potential. We also employ a numerical method in the ranges of \(1 \le z \le 4\) and \(0 \le \alpha \le 4\) to check if the Sturm–Liouville method correctly estimates the critical values of the chemical potential. It turns out that the two methods are agreed within 10 percent error ranges. Finally, we compute free energy density of the dual fluid by using its gravity dual and check if the system shows phase transition at the critical values of the chemical potential \(\mu _\mathrm{c}\) for the given parameter region of \(\alpha \) and z. Interestingly, it is observed that the anisotropic phase is more favored than the isotropic phase for relatively small values of z and \(\alpha \). However, for large values of z and \(\alpha \), the anisotropic phase is not favored.  相似文献   

11.
We investigate the following questions: Given a measure \(\mu _\Lambda \) on configurations on a subset \(\Lambda \) of a lattice \(\mathbb {L}\), where a configuration is an element of \(\Omega ^\Lambda \) for some fixed set \(\Omega \), does there exist a measure \(\mu \) on configurations on all of \(\mathbb {L}\), invariant under some specified symmetry group of \(\mathbb {L}\), such that \(\mu _\Lambda \) is its marginal on configurations on \(\Lambda \)? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which \(\mathbb {L}=\mathbb {Z}^d\) and the symmetries are the translations. For the case in which \(\Lambda \) is an interval in \(\mathbb {Z}\) we give a simple necessary and sufficient condition, local translation invariance (LTI), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which \(\mathbb {L}\) is the Bethe lattice. On \(\mathbb {Z}\) we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When \(\Lambda \subset \mathbb {Z}\) is not an interval, or when \(\Lambda \subset \mathbb {Z}^d\) with \(d>1\), the LTI condition is necessary but not sufficient for extendibility. For \(\mathbb {Z}^d\) with \(d>1\), extendibility is in some sense undecidable.  相似文献   

12.
In this paper, the tristable stochastic resonance (SR) phenomenon induced by \(\alpha \)-stable noise is analysed. The mechanism for realizing resonance is explored based on research concerning the potential function and resonant output of a system. The rules for resonance system parameters qp, skewness parameter r and intensity amplification factor Q of \(\alpha \)-stable noise to act on the resonant output are explored under different values of stability index \(\alpha \) and asymmetric skewness \(\beta \) of \(\alpha \)-stable noise. The results will contribute to a reasonable selection of parameter-induced tristable SR system parameters under \(\alpha \)-stable noise, and lay the foundation for a practical engineering application of weak signal detection based on the SR.  相似文献   

13.
By including the interference effect between the QCD and the QED diagrams, we carry out a complete analysis on the exclusive productions of \(e^+e^- \rightarrow J/\psi +\chi _{cJ}\) (\(J=0,1,2\)) at the B factories with \(\sqrt{s}=10.6\) GeV at the next-to-leading-order (NLO) level in \(\alpha _s\), within the nonrelativistic QCD framework. It is found that the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms that represent the tree-level interference are comparable with the usual NLO QCD corrections, especially for the \(\chi _{c1}\) and \(\chi _{c2}\) cases. To explore the effect of the higher-order terms, namely \({\mathcal {O}} (\alpha ^3\alpha _s^2)\), we perform the QCD corrections to these \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order terms for the first time, which are found to be able to significantly influence the \({\mathcal {O}} (\alpha ^3\alpha _s)\)-order results. In particular, in the case of \(\chi _{c1}\) and \(\chi _{c2}\), the newly calculated \({\mathcal {O}} (\alpha ^3\alpha _s^2)\)-order terms can to a large extent counteract the \({\mathcal {O}} (\alpha ^3\alpha _s)\) contributions, evidently indicating the indispensability of the corrections. In addition, we find that, as the collision energy rises, the percentage of the interference effect in the total cross section will increase rapidly, especially for the \(\chi _{c1}\) case.  相似文献   

14.
In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild–de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle \(\alpha \) of the light ray by constructing a quadrilateral \(\varSigma ^4\) on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) determined by the optical metric \(\bar{g}_{ij}\). On the basis of the definition of the total deflection angle \(\alpha \) and the Gauss–Bonnet theorem, we derive two formulas to calculate the total deflection angle \(\alpha \); (1) the angular formula that uses four angles determined on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) or the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\) being a slice of constant time t and (2) the integral formula on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) which is the areal integral of the Gaussian curvature K in the area of a quadrilateral \(\varSigma ^4\) and the line integral of the geodesic curvature \(\kappa _g\) along the curve \(C_{\varGamma }\). As the curve \(C_{\varGamma }\), we introduce the unperturbed reference line that is the null geodesic \(\varGamma \) on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting \(\varGamma \) vertically onto the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\). We demonstrate that the two formulas give the same total deflection angle \(\alpha \) for the Schwarzschild and the Schwarzschild–de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein–Shapiro’s formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild–de Sitter case, there appear order \({\mathscr {O}}(\varLambda m)\) terms in addition to the Schwarzschild-like part, while order \({\mathscr {O}}(\varLambda )\) terms disappear.  相似文献   

15.
To study the effect of the variation of fused ring size and substitution on the antiviral activity of \(\upbeta \)-carboline alkaloids, four types of structurally novel \(\upbeta \)-carboline alkaloids analogues, with indole-fused six- to nine-membered-rings motifs, were designed, synthesized, and evaluated for the inhibition of tobacco mosaic virus (TMV). Bioassay results indicated that most of these analogues had significant anti-TMV activity; especially I-14 (54 \(\pm \) 3 % at 500 \(\upmu \)g/mL in vitro; 51 \(\pm \) 2, 45 \(\pm \) 2, and 42 \(\pm \) 1 % at 500 \(\upmu \)g/mL in vivo), II-4 (53 \(\pm \) 1 % at 500 \(\upmu \)g/mL in vitro; 49 \(\pm \) 2, 57 \(\pm \) 2, and 48 \(\pm \) 1 % at 500 \(\upmu \)g/mL in vivo), and II-8 (48 \(\pm \) 1 % at 500 \(\upmu \)g/mL in vitro; 53 \(\pm \) 2 %, 56 \(\pm \) 2 %, and 46 \(\pm \) 1 % at 500 \(\upmu \)g/mL in vivo), which were more potent vs. TMV than was ribavirin (36 \(\pm \) 1 % at 500 \(\upmu \)g/mL in vitro; 37 \(\pm \) 2, 41 \(\pm \) 2, and 38 \(\pm \) 1 % at 500 \(\upmu \)g/mL in vivo). The size of the fused ring has important effects on anti-TMV potency, which may be ascribed to conformational differences. The X-ray structures of I-1, I-6, II-8, and III show differing conformational preferences. The most potent compounds can be used as leads for further optimization as antiphytoviral agents.  相似文献   

16.
In dynamical systems, some of the most important questions are related to phase transitions and convergence time. We consider a one-dimensional probabilistic cellular automaton where their components assume two possible states, zero and one, and interact with their two nearest neighbors at each time step. Under the local interaction, if the component is in the same state as its two neighbors, it does not change its state. In the other cases, a component in state zero turns into a one with probability \(\alpha ,\) and a component in state one turns into a zero with probability \(1-\beta \). For certain values of \(\alpha \) and \(\beta \), we show that the process will always converge weakly to \(\delta _{0},\) the measure concentrated on the configuration where all the components are zeros. Moreover, the mean time of this convergence is finite, and we describe an upper bound in this case, which is a linear function of the initial distribution. We also demonstrate an application of our results to the percolation PCA. Finally, we use mean-field approximation and Monte Carlo simulations to show coexistence of three distinct behaviours for some values of parameters \(\alpha \) and \(\beta \).  相似文献   

17.
In this paper, we examine the possible realization of a new inflation family called “shaft inflation” by assuming the modified Chaplygin gas model and a tachyon scalar field. We also consider the special form of the dissipative coefficient \(\Gamma ={a_0}\frac{T^{3}}{\phi ^{2 }}\) and calculate the various inflationary parameters in the scenario of strong and weak dissipative regimes. In order to examine the behavior of inflationary parameters, the \(n_s \)\( \phi ,\, n_s \)r, and \(n_s \)\( \alpha _s\) planes (where \(n_s,\, \alpha _s,\, r\), and \(\phi \) represent the spectral index, its running, tensor-to-scalar ratio, and scalar field, respectively) are being developed, which lead to the constraints \(r< 0.11\), \(n_s=0.96 \pm 0.025\), and \(\alpha _s =-0.019 \pm 0.025\). It is quite interesting that these results of the inflationary parameters are compatible with BICEP2, WMAP \((7+9)\) and recent Planck data.  相似文献   

18.
We discuss the determination of the CKM angle \(\alpha \) using the non-leptonic two-body decays \(B\rightarrow \pi \pi \), \(B\rightarrow \rho \rho \) and \(B\rightarrow \rho \pi \) using the latest data available. We illustrate the methods used in each case and extract the corresponding value of \(\alpha \). Combining all these elements, we obtain the determination \(\alpha _\mathrm{dir}={({86.2}_{-4.0}^{+4.4} \cup {178.4}_{-5.1}^{+3.9})}^{\circ }\). We assess the uncertainties associated to the breakdown of the isospin hypothesis and the choice of the statistical framework in detail. We also determine the hadronic amplitudes (tree and penguin) describing the QCD dynamics involved in these decays, briefly comparing our results with theoretical expectations. For each observable of interest in the \(B\rightarrow \pi \pi \), \(B\rightarrow \rho \rho \) and \(B\rightarrow \rho \pi \) systems, we perform an indirect determination based on the constraints from all the other observables available and we discuss the compatibility between indirect and direct determinations. Finally, we review the impact of future improved measurements on the determination of \(\alpha \).  相似文献   

19.
The present contribution investigates the dynamics generated by the two-dimensional Vlasov-Poisson-Fokker-Planck equation for charged particles in a steady inhomogeneous background of opposite charges. We provide global in time estimates that are uniform with respect to initial data taken in a bounded set of a weighted \(L^2\) space, and where dependencies on the mean-free path \(\tau \) and the Debye length \(\delta \) are made explicit. In our analysis the mean free path covers the full range of possible values: from the regime of evanescent collisions \(\tau \rightarrow \infty \) to the strongly collisional regime \(\tau \rightarrow 0\). As a counterpart, the largeness of the Debye length, that enforces a weakly nonlinear regime, is used to close our nonlinear estimates. Accordingly we pay a special attention to relax as much as possible the \(\tau \)-dependent constraint on \(\delta \) ensuring exponential decay with explicit \(\tau \)-dependent rates towards the stationary solution. In the strongly collisional limit \(\tau \rightarrow 0\), we also examine all possible asymptotic regimes selected by a choice of observation time scale. Here also, our emphasis is on strong convergence, uniformity with respect to time and to initial data in bounded sets of a \(L^2\) space. Our proofs rely on a detailed study of the nonlinear elliptic equation defining stationary solutions and a careful tracking and optimization of parameter dependencies of hypocoercive/hypoelliptic estimates.  相似文献   

20.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号