首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This paper is concerned with the backscattering of HF radio waves from the rough sea surface, which have propagated through the ionosphere with random large-scale irregularities.

For the sake of simplicity, it is assumed in calculations that the rough sea surface is a perfectly conducting surface with the known Philips power spectrum of irregularities. Ionospheric irregularities of a random medium that are isotropic and single-scale ones, with a Gaussian spectrum, are considered within the limits of the hypothesis of frozen-in irregularities.

Within the first approximation of perturbation theory, using, as the incident wave and the Green function, their geometrical-optics approximations, we obtained the expression for the backscattering spectrum of the ionospheric chirp radio signal with a Gaussian envelope. The expression involves the parameters of the receive–transmit antenna, the signal, the propagation medium, and of the scattering surface. Numerical simulation was used to investigate the influence of all the above-mentioned parameters on the backscattering spectrum. It is shown that travel of ionospheric irregularities has the largest influence on the scattering spectrum, the signal parameters mainly determine the size of the scattering area in the range, and the form of the coherent integration window determines the form of the received signal and can distort it.  相似文献   

2.
This paper is concerned with the backscattering of HF radio waves from the rough sea surface, which have propagated through the ionosphere with random large-scale irregularities.

For the sake of simplicity, it is assumed in calculations that the rough sea surface is a perfectly conducting surface with the known Philips power spectrum of irregularities. Ionospheric irregularities of a random medium that are isotropic and single-scale ones, with a Gaussian spectrum, are considered within the limits of the hypothesis of frozen-in irregularities.

Within the first approximation of perturbation theory, using, as the incident wave and the Green function, their geometrical-optics approximations, we obtained the expression for the backscattering spectrum of the ionospheric chirp radio signal with a Gaussian envelope. The expression involves the parameters of the receive-transmit antenna, the signal, the propagation medium, and of the scattering surface. Numerical simulation was used to investigate the influence of all the above-mentioned parameters on the backscattering spectrum. It is shown that travel of ionospheric irregularities has the largest influence on the scattering spectrum, the signal parameters mainly determine the size of the scattering area in the range, and the form of the coherent integration window determines the form of the received signal and can distort it.  相似文献   

3.
Summary The effective-medium approximation is applied to investigate scattering from a half-space of randomly and densely distributed discrete scatterers. Starting from vector wave equations, an approximation, called effective-medium Born approximation, a particular way, treating Green's functions, and special coordinates, of which the origin is set at the field point, are used to calculate the bistatic- and back-scatterings. An analytic solution of backscattering with closed form is obtained and it shows a depolarization effect. The theoretical results are in good agreement with the experimental measurements in the cases of snow, multi- and first-year sea-ice. The root product ratio of polarization to depolarization in backscattering is equal to 8; this result constitutes a law about polarized scattering phenomena in the nature.  相似文献   

4.
Based on the geometrical-optics approximation, we propose a method for calculation of statistical moments of the radio-wave phase in the case of total internal reflection from a randomly inhomogeneous ionosphere with a monotonic height profile of regular dielectric permittivity. To take into account the radio-wave scattering at the reflection point in a correct way, we perform analytical transformation of the eikonal equation solution derived in a first approximation of the perturbation method.  相似文献   

5.
Abstract

Numerical simulations, using both exact and approximate methods, are used to study rough surface scattering in both the smd and large roughness regimes. This study is limited lo scattcring lrom rough one-dimensional surfaces that obey the Dirichlet boundary condition and have a Gaussian roughness spectrum. For surfdces with small roughness (kh?1, where k is the radiation wavenumber and h is the root-mean-square (RMS) Surface height), perturbation theory is known to be valid. However, it is shown numerically that when kh?1 and kl?6 (where I is the surface correlation length) the Kirchhoffapprorimation is valid except at low grazing angles, and one must sum the first three orders of perturbation theory obtain the correct result. For kh?1 and kl?1, first-order perturbation theory is accurate. In this region, the accuracy of the first two terms of the iterative series solution of the exact integral equation is examined; the first term a1 this series is the Kirchhoff approximation, It is shown numerically that lor very small kh these first two terms reduce to first-order perturbation theory. However, lor this reduction to occur, kh must be made smaller than necessdry lor first-order perturbation theory to be accurate. In the regime of large roughness (kh?1) backscattering enhancement occurs when the RMS slope is on the order of unity. Several investigators have recently shown that the second term of the iterative series solution (the double-scattering term) replicates the properties of backscattering enhancement reasonably well. However, the double-scattering term has a lundamental flaw: predictions lor the scattering cross section per unit length based on the double-scattering term increase as the surfdce length is increased. This is shown here with numerical simulations and with an approximate analytical result based on the high frequency limit. The physical significance of this finding is also discussed. The final topic is the use of the double-scattering approximation to study the mechanism for backscattering enhancement with the Dirichlet boundary condition. This mechanism is usually assumed to be interference between reciprocal scattering paths. When the interlerence between reciprocal scattering paths is removed, the enhancement is eliminated. This shows that interference between reciprocal paths is almost certainly the dominant mechanism for backscattering enhancement in the scattering regime studied.  相似文献   

6.
We consider the oblique incidence of a small-amplitude plane electromagnetic wave on a layer of turbulent absorbing plasma in a uniform external magnetic field. The equations for the first two statistical moments of the angular power spectrum of scattered radiation are derived in the geometrical-optics approximation. We show that two asymmetry factors of the problem, i.e., the oblique incidence and the influence of the anisotropic medium, compensate for each other along a certain direction and impede the appearance of the effect of displacement of the power-spectrum maximum and the effect of anomalous spectrum broadening. We find the condition at which such a case of wave propagation is realized. The dependence of the angular-spectrum shape on the distance from the plasma-layer boundary is studied numerically without using the small-angle approximation. The calculations confirm the results obtained using the geometrical-optics approximation.  相似文献   

7.
We consider multiple light scattering in a nematic liquid crystal. Using the Monte Carlo method, we calculate for the first time the effect of a magnetic field on the shape of the peak of coherent backscattering taking into account the long-range action of fluctuations of the orientational order and anisotropy of the scattering length. For a small number of initial and final scattering events, we take into account the ordinary mode of light, which is weakly scattered in a nematic liquid crystal (NLC), whereas a strongly scattered extraordinary mode is taken into account for all scattering events. For simplicity, we use a single-constant approximation of the NLC elastic moduli. We show that the angular shape of the peak of coherent backscattering remains nearly unchanged, whereas the magnetic field and the scattering phase function vary by several orders of magnitude.  相似文献   

8.
In generalizing the Milne equation using the Wiener-Hopf method, the solution of the problem of multiple scattering by a medium with an isotropic single-scattering indicatrix for an arbitrary angle of incidence is found. The resulting solution is used as an initial approximation for calculating the intensity of coherent backscattering for an anisotropic indicatrix.  相似文献   

9.
10.
We obtain an exact analytical solution to the problem of the enhanced backscattering of a short pulsed signal from a two- and three-dimensional medium with isotropically scattering centres. The angular spectrum is expressed in terms of the solution to the corresponding stationary problem. The intensity oscillations are shown to appear on the tails of the angular spectrum. The origin of these oscillations is associated with the ballistic phase shift between the interfering waves arriving at the detector. It is shown that the finiteness of the slab thickness influences the magnitude of the backscattering intensity and does not change the shape of the angular spectrum. The range of validity for the diffusion approximation is pointed out.

The results obtained in the paper also contain a generalization of the well known solution to the problem of incoherent transfer to a pulsed signal to the case of two-dimensional disordered media.  相似文献   

11.
Recently, we presented a study of pulse scattering by rough surfaces based on the first-order Kirchhoff approximation which is applicable to rough surfaces with RMS slope less than 0.5 and correlation distance l≳λ. However, there has been an increased interest in enhanced backscattering from rough surfaces, study of which requires inclusion of the second-order Kirchhoff approximation with shadowing corrections. This paper presents a theory for the two-frequency mutual coherence function in this region and shows that the multiple scattering on the surface gives rise to an additional pulse tail in the direction of enhanced backscattering. The theory predicts pulse broadening approximately 20% greater than that caused by single scattering alone for a delta-function incident pulse and typical surface parameters. Analytical results are compared with Monte Carlo simulations and millimetre-wave experiments for the one-dimensional rough surface with RMS height 1λ and correlation distance 1λ, showing good agreement.  相似文献   

12.
Making use of the addition theorem for the cylindrical wave functions and the complex-source-point method in cylindrical coordinates, an exact solution to the Helmholtz equation is derived, which corresponds to a tightly focused (or collimated) cylindrical quasi-Gaussian beam with arbitrary waist. The solution is termed “quasi-Gaussian” to make a distinction from the standard Gaussian beam solution obtained in the paraxial approximation. The advantage of introducing this new solution is the efficient and fast computational modeling of tightly focused or quasi-collimated cylindrical wave-fronts depending on the dimensionless waist parameter kw0, where k is the wavenumber of the acoustical radiation. Moreover, a closed-form partial-wave series expansion is obtained for the incident field, which has the property that the axial scattering (i.e. along the direction of wave propagation) and the axial acoustic radiation force (which is a time-averaged quantity) on a cylinder, can be calculated without any approximations in the limit of linear acoustical waves in a nonviscous fluid. Examples are found where the extinction in the radiation force function plot is found to be correlated with conditions giving reduction of the backscattering from an elastic cylinder. Those results are useful in beam-forming design, particle manipulation in acoustic tweezers operating with focused cylindrical beams, and the prediction of the scattering and radiation forces on a cylindrical particle or liquid bridges.  相似文献   

13.
Abstract

Recently, we presented a study of pulse scattering by rough surfaces based on the first-order Kirchhoff approximation which is applicable to rough surfaces with RMS slope less than 0.5 and correlation distance l?λ. However, there has been an increased interest in enhanced backscattering from rough surfaces, study of which requires inclusion of the second-order Kirchhoff approximation with shadowing corrections. This paper presents a theory for the two-frequency mutual coherence function in this region and shows that the multiple scattering on the surface gives rise to an additional pulse tail in the direction of enhanced backscattering. The theory predicts pulse broadening approximately 20% greater than that caused by single scattering alone for a delta-function incident pulse and typical surface parameters. Analytical results are compared with Monte Carlo simulations and millimetre-wave experiments for the one-dimensional rough surface with RMS height 1λ and correlation distance 1λ, showing good agreement.  相似文献   

14.
Based on an expansion of the Bethe-Salpeter equation in scattering orders a semi-analytic approach for simulation of coherent phenomena of multiple scattering in random media has been developed. We found that for scalar field the manifestation of these phenomena, observed as temporal field correlation function and coherent backscattering, are universal and well agreed with the results predicted by diffusion approximation. For the electromagnetic field the temporal correlation function and coherent backscattering are noticeably differ from those found for the scalar field, depending strongly on the scattering anisotropy. The obtained numerical results, for the first time to our knowledge, are compared directly with the known generalizations of the Milne solution.  相似文献   

15.
A P L model of a planar multiply scattering multilayer plant tissue is developed based on the expansion of radiation intensity in spherical harmonics. The dependences of differential backscattering and fluorescence coefficients on the chlorophyll concentration are numerically studied in the first-order P L approximation. It is shown that the P L approximation yields the results that are close to the numerical Monte Carlo solution (the deviations do not exceed 5.3%). The contribution of fluorescence to the backscattering intensity is calculated to reach 16% at high chlorophyll concentrations.  相似文献   

16.
In this paper we revisit the parabolic approximation for wave propagation in random media by taking into account backscattering. We obtain a system of transport equations for the moments of the components of reflection and transmission operators. In the regime in which forward scattering is strong and backward scattering is weak, we obtain closed form expressions for physically relevant quantities related to the reflected wave, such as the beam width, the spectral width and the mean spatial power profile. In particular, we analyze the enhanced backscattering phenomenon, that is, we show that the mean power reflected from an incident quasi-plane wave has a maximum in the backscattered direction. This enhancement can be observed in a small cone around the backscattered direction and we compute the enhancement factor as well as the shape of the enhanced backscattering cone.  相似文献   

17.
This paper deals with the scattering of a TM plane wave from conductive periodic random surfaces. By means of the stochastic functional approach, the scattered field is expressed in terms of a harmonic series representation, in which the coefficients are homogeneous random functions and are given by Wiener-Hermite expansions. An approximate solution for the Wiener kernels is obtained up to the second order. Several anomalies appear in the angular distribution of the incoherent scattering because of combinations of scattering due to surface randomness and diffraction due to surface periodicity. These are incoherent Wood's anomalies associated with guided surface waves propagating along the surface, enhanced backscattering and diffracted backscattering enhancement. The physical reasons for these anomalies and numerical results are discussed.  相似文献   

18.
罗伟  张民  周平  殷红成 《中国物理 B》2010,19(8):84102-084102
<正>An iterative method in the Kirchhoff approximation is proposed for high frequency multiple electromagnetic scattering from two-dimensional dielectric sea surface.The multiple interaction of the scattering field is characterized with the corrected electromagnetic currents of the wind-driven sea surface.The actual surface currents are approximated with the iterative solution of the corrected currents.A newly developed sea spectrum,Elfouhaily spectrum,is utilized to build the sea surface model.The shadowing correction is improved by the Depth-Buffer algorithm.The validity of the iterative Kirchhoff approximation is verified by the agreement of backscattering coefficients with the measured data.  相似文献   

19.
Abstract

This paper Presents numerical simulations, theoretical analysis, and millimeter wave experiments for scattering from one-dimensional very rough surfaces. First, numerical simulations are used to investigate the effects of roughness spectrum, height variation, interface medium, polarization, and incident angle on the backscattering enhancement. The enhanced backscattering due to rough surface scattering is divided into two cases; the RMS height close to a wavelength and RMS slope close to unity, and RMS height much smaller than a wavelength with surface wave contributions. Results also show that the enhancement is sensitive to the roughness spectrum. Next, a theory based on the first- and second-order Kirchhoff approximation modified with angular and propagation shadowing is developed. The theoretical solutions provide a physical explanation of backscattering enhancement and agree well with the numerical results. In addition to the scattering of a monochromatic wave, the analytical results of the broadening and lateral spreading of a pulsed beam wave scattering from rough surfaces are also discussed. Finally, the existence of backscattering enhancement from one-dimensional very rough conducting surfaces with exact Gaussian statistics and Gaussian roughness spectrum is verified by a millimeter-wave experiment. Experimental results which show enhanced backscattering for both TE and TM polarizations for different angles of incidence are presented.  相似文献   

20.
A numerical model that allows one to calculate elements of the scattering matrix for transparent particles of random shape in the geometrical optics approximation is presented. It is shown that a deviation from sphericity, which, in particular, is modeled by a reduction of the number of triangular facets approximating a sphere, essentially affects the magnitude, position, and width of peaks of the photometric and polarimetric indicatrices. Thus, when 1500 facets were used for the approximation, the amplitude of the polarimetric peak associated with the first rainbow, which is located close to the scattering angle 160°, decreases by a factor of two. Calculations showed that, in the region of backscattering, for particles of an arbitrary shape, the linear polarization ?F 12/F 11 has no negative branch, which is well observed for spherical particles. In going from spherical to nonspherical particles, the backscattering peak also disappears. The indicatrices for particles of irregular shape that were calculated for small distances from the center of a particle noticeably differ from the indicatrices at infinity. Thus, when simulating multiple scattering in dense powderlike media, the use of particle scattering indicatrices that were calculated for infinite distances is incorrect even in the geometrical optics approximation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号