首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
cis-Cyclotetrasiloxanes of the formula cis-[PhSi(O)(OSiMe2 R)]4 with R = Me, CH2Cl, CH CH2 and cis-[ClC6H4Si(O)(OSiMe3)]4 were synthesized and investigated in terms of their thermotropic phase transitions. Two ordered phases were observed for the cis-cyclotetrasiloxanes, one at lower temperature exhibiting the properties of a crystal and one at higher temperature exhibiting the properties of a plastically crystalline (3D) mesophase. A detailed examination of the mesophase behaviour and mesophase structure of octaphenylcyclotetrasiloxane was also carried out. It was shown that the thermal properties and structural characteristics of the mesophase are influenced by the structural characteristics of the substituent attached at the silicon atom in the tetracyclosiloxane. The new mesomorphic cis-cyclotetrasiloxanes are by far the largest molecules reported to date as forming plastic crystals, and the temperature region of the mesophase is much broader than in other plastic crystals. All five cyclotetrasiloxanes studied were found to be isomorphous in the 3D-mesophase and the low temperature forms of the two cis-cyclotetrasiloxanes: PhSi(O)(OSiMe2 R)4 (R = Me, CH CH2) were also isomorphous.  相似文献   

2.
New stereoregular cis-penta[(phenyl)(trimethylsiloxy)]cyclopentasiloxane cis-[PhSi(O)(OSiMe3)]5 was synthesized. According to the data from DSC, X-ray diffraction, and polarization microscopy, the noncrystallizable cyclopentasiloxane exists in the mesomorphic state throughout the temperature range below the temperature of destruction and is transformed into mesomorphic glass below the glass transition temperature. This compound possesses the polymesomorphic properties and forms two mesomorphic modifications. The type of mesomorphic ordering for these modifications was determined. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1353–1358, July, 2007.  相似文献   

3.
Symmetric and asymmetric (Janus-type) new “lantern cage” siloxanes (PhSiO1.5)4(Me2SiO)4(RSiO1.5)4 (R=Ph or iBu) were synthesized through reaction of all-cis-[PhSi(OSiMe2Br)O]4 with all-cis-[RSi(OH)O]4 (R=Ph or iBu). These precursors were obtained by facile two or three-step reactions from commercially available compounds. The spectroscopic properties of the resulting products were fully characterized and they showed high thermal stability and sublimation without decomposition. The crystal structures clearly indicated that the internal vacancy volumes of the lantern cages are considerably larger than that of octaphenylsilsesquioxane (PhSiO1.5)8. DFT calculations of the lantern cage showed a distinctly different electronic state from that of octasilsesquioxane. These results suggest that lantern cage siloxanes have a characteristic “field” in the molecule.  相似文献   

4.
Density functional theory (DFT) is employed to: 1) propose a viable catalytic cycle consistent with our experimental results for the mechanism of chemically driven (CeIV) O2 generation from water, mediated by nonheme iron complexes; and 2) to unravel the role of the ligand on the nonheme iron catalyst in the water oxidation reaction activity. To this end, the key features of the water oxidation catalytic cycle for the highly active complexes [Fe(OTf)2(Pytacn)] (Pytacn: 1‐(2′‐pyridylmethyl)‐4,7‐dimethyl‐1,4,7‐triazacyclononane; OTf: CF3SO3?) ( 1 ) and [Fe(OTf)2(mep)] (mep: N,N′‐bis(2‐pyridylmethyl)‐N,N′‐dimethyl ethane‐1,2‐diamine) ( 2 ) as well as for the catalytically inactive [Fe(OTf)2(tmc)] (tmc: N,N′,N′′,N′′′‐tetramethylcyclam) ( 3 ) and [Fe(NCCH3)(MePy2CH‐tacn)](OTf)2 (MePy2CH‐tacn: N‐(dipyridin‐2‐yl)methyl)‐N′,N′′‐dimethyl‐1,4,7‐triazacyclononane) ( 4 ) were analyzed. The DFT computed catalytic cycle establishes that the resting state under catalytic conditions is a [FeIV(O)(OH2)(LN4)]2+ species (in which LN4=Pytacn or mep) and the rate‐determining step is the O?O bond‐formation event. This is nicely supported by the remarkable agreement between the experimental (ΔG=17.6±1.6 kcal mol?1) and theoretical (ΔG=18.9 kcal mol?1) activation parameters obtained for complex 1 . The O?O bond formation is performed by an iron(V) intermediate [FeV(O)(OH)(LN4)]2+ containing a cis‐FeV(O)(OH) unit. Under catalytic conditions (CeIV, pH 0.8) the high oxidation state FeV is only thermodynamically accessible through a proton‐coupled electron‐transfer (PCET) process from the cis‐[FeIV(O)(OH2)(LN4)]2+ resting state. Formation of the [FeV(O)(LN4)]3+ species is thermodynamically inaccessible for complexes 3 and 4 . Our results also show that the cis‐labile coordinative sites in iron complexes have a beneficial key role in the O?O bond‐formation process. This is due to the cis‐OH ligand in the cis‐FeV(O)(OH) intermediate that can act as internal base, accepting a proton concomitant to the O?O bond‐formation reaction. Interplay between redox potentials to achieve the high oxidation state (FeV?O) and the activation energy barrier for the following O?O bond formation appears to be feasible through manipulation of the coordination environment of the iron site. This control may have a crucial role in the future development of water oxidation catalysts based on iron.  相似文献   

5.
The first iridium(I) complex containing siloxyl and N-heterocyclic carbene ligand such as [Ir(cod)(IMes)(OSiMe3)] (1) and [Ir(CO)2(IMes)(OSiMe3)] (3) have been synthesized and their structures solved by spectroscopy and X-ray methods as well as catalytic properties in selected hydrogenation reactions have been presented in comparison to their chloride analogues, i.e. [Ir(Cl)(cod)(IMes)] (2) and [Ir(Cl)(CO)2(IMes)] (4). The attempts at synthesis of iridium(I) complex with tert-butoxyl ligand has failed as leading instead to the iridium hydroxide complex [Ir(cod)(OH)(IMes)] (5) whose X-ray structure has also been solved. All complexes (1)-(5) show square planar geometry typical of the four-coordinated iridium complexes. Catalytic activity of complexes 1 and 2 was tested in transfer hydrogenation of acetophenone and hydrogenation of olefins.  相似文献   

6.
Ruthenium(II) complexes containing the tetradentate ligand bis[4(4′‐methyl‐2,2′‐bipyridyl)]‐1,n‐alkane (“bbn”; n=10 and 12) have been synthesised and their geometric isomers separated. All [Ru(phen)(bbn)]2+ (phen=1,10‐phenanthroline) complexes exhibited excellent activity against Gram‐positive bacteria, but only the cis‐α‐[Ru(phen)(bb12)]2+ species showed good activity against Gram‐negative species. In particular, the cis‐α‐[Ru(phen)(bb12)]2+ complex was two to four times more active than the cis‐β‐[Ru(phen)(bb12)]2+ complex against the Gram‐negative strains. The cis‐α‐ and cis‐β‐[Ru(phen)(bb12)]2+ complexes readily accumulated in the bacteria but, significantly, showed the highest level of uptake in Pseudomonas aeruginosa. Furthermore, the accumulation of the cis‐α‐ and cis‐β‐[Ru(phen)(bb12)]2+ complexes in P. aeruginosa was considerably greater than in Escherichia coli. The uptake of the cis‐α‐[Ru(phen)(bb12)]2+ complex into live P. aeruginosa was confirmed by using fluorescence microscopy. The water/octanol partition coefficients (log P) were determined to gain understanding of the relative cellular uptake. The cis‐α‐ and cis‐β‐[Ru(phen)(bbn)]2+ complexes exhibited relatively strong binding to DNA (Kb≈106 M ?1), but no significant difference between the geometric isomers was observed.  相似文献   

7.
B. Machura  M. Wolff  J. Kusz  R. Kruszynski   《Polyhedron》2009,28(14):2949-2964
The paper presents a combined experimental and computational study of mono- and disubstituted Re(V) oxocomplexes obtained in the reactions of [ReOX3(EPh3)2] (X = Cl, Br; E = P, As) with 2-(2-hydroxyphenyl)-1H-benzimidazole (Hhpb). From the reactions of [ReOX3(PPh3)2] with Hhpb in molar ratio 1:1 cis and trans stereoisomers of [ReOX2(hpb)(PPh3)] were isolated, whereas the [ReOX3(AsPh3)2] oxocompounds react with Hhpb to give only cis-halide isomers. The [ReOX2(hpb)(EPh3)] and [ReO(OMe)(hpb)2]·MeCN complexes have been characterized spectroscopically and structurally (by single-crystal X-ray diffraction). The DFT and TDDFT calculations have been carried out for the trans-[ReOBr2(hpb)(PPh3)], cis-[ReOBr2(hpb)(AsPh3)] and [ReO(OMe)(hpb)2], and their UV–Vis spectra have been discussed on this basis.  相似文献   

8.
Abstract

The compounds [Cu(oxpn)] (1), [(bpy)(H2O)Cu(μ-cis-oxpn)Cu(H2O)] · 2NO3 · 2H2O (2) and [(Him)(NO3)Cu(μ-trans-oxpn)Cu(Him)(NO3)] (3), where oxpn is the dianion of N,N′-bis(3-aminopropyl)oxamide, bpy is bipyridine and Him is imidazole, were prepared and characterized by elemental analysis and IR spectra. Complex (2) was also studied by thermochemical analysis and its structure determined by X-ray crystallography. The structure of complex (2) consists of binuclear copper(II) molecules in which the copper(II) atoms are bridged by an oxamidato group in the cis conformation resulting a copper-copper distance of 5.21 Å. Both copper(II) ions are in square-pyramidal surroundings with almost coplanar basal planes and a water molecule occupying the apical positions. The N atoms of the oxamidato moiety are trigonal. Two lattice water molecules together with the two coordinated ones hydrogen bond with nitrate ions.  相似文献   

9.
Hydrolytic condensation of ethyltriethoxysilane in the presence of NaOH (Si: NaOH = 1) gave crystal solvate of sodium cis-tetraethyltetrasiloxanolate {(Na+)4[EtSi(O)O]4nL (1, L = EtOH, H2O) in high yield. The molecular structure of compound 1 at L = EtOH, n = 8 was determined by X-ray diffraction analysis. The reaction of compound 1 with trimethylchlorosilane affords cis-tetra[ethyl(trimethylsiloxy)]cyclotetrasiloxane cis-[EtSi(O)OSiMe3]4, which is the first representative of the group of mesomorphic cyclotetrasiloxanes containing alkyl groups. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 74–79, January, 2007.  相似文献   

10.
The possibility to synthesize stereoregular tris-cis-tris-trans- dodeca[(phenyl)(hydroxy)]cyclododecasiloxane (tris-cis-tris-trans-[PhSi(O)OH]12) in an inorganic liquid medium – aqueous carbonic acid solution – was shown. The interaction of polyhedral phenylcoppersodiumsiloxane, {[(C6H5Si(O)O?]12(Cu2+)4(Na+)4}*(L)m (L?=?Bun OH, H2O), with carbonic acid can be considered as a new ‘green’ method to obtain functional organosiloxane macrocycles. In contrast to the known methods, no organic solvents were used during the reaction. The identification of the structure of the end compound was performed by means of NMR and Infrared spectroscopy as well as X-ray crystallography.  相似文献   

11.
The new Pd(II), Pt(II), Re(V), Mo(VI) and W(VI) complexes of 2-hydroxynicotinic acid (H2nicO), trans-[PdCl(HnicO)(PPh3)2]·0.75CH3CN (1), K[PdCl(HnicO)2]·H2O (2), [Pd(HnicO)2(bipy)] (3), cis-[PtCl(HnicO)(PPh3)2]·0.75CH3OH·0.5H2O (4), [PtCl(HnicO)(bipy)] (5), cis-[ReOI2(HnicO)(PPh3)] (6), Na2[Mo2O6(HnicO)2]·5H2O (7), Na2[Mo4O12(HnicO)2]·2H2O (8) and Na2[W2O6(HnicO)2]·5H2O (9) have been prepared. The crystal structures of 1 and 4, were determined by X-ray diffraction and show the HnicO ligand coordinated to palladium or platinum through the nitrogen atom only. Infrared, Raman, 1H and 13C{1H} NMR spectroscopic data for the complexes are presented and are in agreement with the crystallographic results.  相似文献   

12.
The reaction of less than one equivalent of [Rh2Cl2(nbd)2] with [Ru4H(CO)12BH], which contains a semi-interstitial boron atom, yields the heterometallic boride clustercis-[Rh2Ru4H(CO)12(nbd)2B] which has been characterized by spectroscopic and X-ray diffraction methods. The cluster has an octahedral core, consistent with an 86 electron count. Deprotonation yields the conjugate basecis-[Rh2Ru4(CO)12(nbd)2B] which has been isolated and fully characterized as the [(Ph3P)2N]+ salt. There is little structural perturbation upon going fromcis-[Rh2Ru4H(CO)12(nbd)2B] tocis-[Rh2Ru4(CO)12(nbd)2B] and neither cluster shows a tendency for the formation of thetrans skeletal isomer in contrast to the analogous carbonyl clustercis-[Rh2Ru4(CO)16B]. If the reaction of [Rh2Cl2(nbd)2] with [Ru4H(CO)12BH] is allowed to proceed for 30 min and [R 3PAuCl] (R=Ph, C6H11, 2-MeC6H4) is then added, the clusterscis-[Rh2Ru4(CO)12(nbd)2B(AuPR3)] andcis-[Rh2Ru4(CO)14(nbd)B(AuPR3)] are formed in yields that are dependent upon the initial reaction period. The single crystal structures ofcis-[Rh2Ru4(CO)12(nbd)2B(AuPPh3)] andcis-[Rh2Ru4(CO)14(nbd)B(AuPPh3)] are reported. In contrast to their all-carbonyl analoguescis-[Rh2Ru4(CO)16B(AuPR 3)] (R=Ph or C6H11), the nbd derivatives do not undergocistrans skeletal isomerism.  相似文献   

13.
The reaction of cis-[Pt(15NH3)2(H2O) 2] 2+ (3) with N-acetylcysteine [H3accys] was investigated in aqueous solution. In this reaction, the ammine in the platinum complex formed was liberated. A mono-dentate sulfur-boundplatinum(II) product cis-[Pt(15NH3)2(H2O)(H2accys-S)]+ (7) and six-membered che-late ring complex cis-[Pt(15NH3)2 (Haccys-S,O)] (8) were formed in solution. The dinuclear sulfur-bridged complex 9, giving a broad peak in 15N NMR, was also observed, but only present in very tiny amounts. The mass spectrometry (ES-MS) was undertaken from this re action, and the product detected was only the dinuclear sulfur bridged platinum species and species related to it by ammine loss.  相似文献   

14.
The silyloxycyclopentadienyl hydride complexes [Re(H)(NO)(PR3)(C5H4OSiMe2tBu)] (R=iPr ( 3 a ), Cy ( 3 b )) were obtained by the reaction of [Re(H)(Br)(NO)(PR3)2] (R=iPr, Cy) with Li[C5H4OSiMe2tBu]. The ligand–metal bifunctional rhenium catalysts [Re(H)(NO)(PR3)(C5H4OH)] (R=iPr ( 5 a ), Cy ( 5 b )) were prepared from compounds 3 a and 3 b by silyl deprotection with TBAF and subsequent acidification of the intermediate salts [Re(H)(NO)(PR3)(C5H4O)][NBu4] (R=iPr ( 4 a ), Cy ( 4 b )) with NH4Br. In nonpolar solvents, compounds 5 a and 5 b formed an equilibrium with the isomerized trans‐dihydride cyclopentadienone species [Re(H)2(NO)(PR3)(C5H4O)] ( 6 a,b ). Deuterium‐labeling studies of compounds 5 a and 5 b with D2 and D2O showed H/D exchange at the HRe and HO positions. Compounds 5 a and 5 b were active catalysts in the transfer hydrogenation reactions of ketones and imines with 2‐propanol as both the solvent and H2 source. The mechanism of the transfer hydrogenation and isomerization reactions was supported by DFT calculations, which suggested a secondary‐coordination‐sphere mechanism for the transfer hydrogenation of ketones.  相似文献   

15.
By using a new 4,6‐bis(imidazol‐1‐yl) isophthalic acid ligand (H2bimip) with imidazolyl and carboxyl bifunctional groups, three new MOFs, [Co(bimip)(H2O)0.5] ? 0.5 H2O ( 1 ), [Zn(bimip)] ( 2 ), and [Mn(bimip)(H2O)2] ? H2O ( 3 ), have been solvothermally synthesized in different solvent systems. H2bimip displays three different coordinated modes through the imidazolyl and carboxyl groups, and different ciscis and transcis configurations, which result in distinct 3D topological frameworks: a (4,8)‐connected scu net for 1 ; a twofold interpenetrated (4,4)‐connected pts net for 2 ; and a four‐connected sra net for 3 . Compounds 1 and 3 show antiferromagnetic properties, and 2 emits strong solid‐state blue luminescence. Compound 1 shows good chemical stability in acidic and basic environments and in boiling water. Additionally, the polar channels in 1 , which are decorated by uncoordinated carboxylate O atoms and imidazolyl fragments, allow it to adsorb CO2 molecules selectively over CH4, and the CO2 binding sites in the framework were distinguished by molecular simulations.  相似文献   

16.
Three new thiacalix[4]arene derivatives, 5,11,17,23-tetra-tert-butyl-25,27-di(2-hydroxyethoxy)-26,28-dihydroxythiacalix-{}[4]arene (2), 5,11,17,23-tetra-tert-25, 26,27,28-tetrakis[(methylcarboxyl)methoxy]thiacalix[4]arene (3),5,11,17,23-tetra-tert-butyl-25,26,27,28-tetrakis(2-hydroxy-1-propanoxy)thiacalix[4]arene (4), were synthesized for the first time. The coordination properties of thiacalix[4]arene(1) and its derivatives (2 and 4) were investigated by detecting the interactions betweenthese compounds and two palladium complexes, cis-[Pd(en)(H2O)2]2+ and cis-[Pd(dtco-3-OH)(H2O)2]2+, by means of electrospray ionization mass spectrometry (ESI-MS) technique.  相似文献   

17.
Amido Ligands for the Synthesis of Polynuclear Lanthanoid Complexes By 1 : 1 reaction of LnBr3 with NaNHPh in THF the Rare-Earth Complexes [Ln2Br42-NHPh)2(thf)5] (Ln = Sm ( 1 ), Ln = Gd ( 2 )) with two bridging anilido ligands are obtained. In the system LnBr3/NaNHPh/(Me2SiO)3 the tetranuclear compounds [Ln44-O)(NHPh)3(OSiMe2NPh)6Na5(thf)7] · THF (Ln = Gd ( 3 ), Ln = Yb ( 4 )) can be built up. They have a central μ4-oxygene atom in the Ln4-tetrahedron. It has an oxa-dimethylsilyl-N-phenylamido ligand over all edges and an anilido ligand on three vertexes. By this reaction small amount of [Na4(thf)6Yb2(OSiMe2NPhSiMe2O)2(OSiMe2NPh)2(NHPh)2] ( 5 ) with a O- and N-bridged Yb–Na polyhedron and N-phenyl-bis(dimethylsilanolato)-ligands coordinating μ22 with its oxygen atoms are obtained. Reaction of Lanthanideshalides with LiNHtBu leads to dimeric complexes. The formation of bridging oxasilylamido ligands is also observed. The compound [Li2Ln(OSiMe2NtBu)2(HNtBu)(thf)]2 (Ln=Sm ( 6 ), Gd ( 7 ) and Yb ( 8 )) contains now an O- and N-bridged Ln–Li polyhedron. (Crystal Data of 1–8 see ‘‘Inhaltsverzeichnis”︁”︁).  相似文献   

18.
The behaviour of the Cobalt(III)–nta (nta = nitrilotriacetate) system in an acidic medium was investigated. The acid dissociation constant, pK a1, of [(nta)(H2O)Co(-OH)Co(H2O)(nta)] was determined as 3.09(3) and the pK a of the cis-[Co(nta)(H2O)2]/[Co(nta)(H2O)(OH)] equilibrium was determined as 6.71(1). cis-[Co(nta)(H2O)2] undergoes ring-opening upon acidification below pH = 2.0. The formation of [Co( 3-nta)(H2O)3]+ was also studied. The substitutions between cis-[Co(nta)(H2O)2] and NCS ions were investigated in the pH = 2–7 ranges. [Co(nta) (H2O)(OH)] reacts ca. 70 times faster at 24.7 °C with NCS ions than cis-[Co(nta)(H2O)2], indicating a cis-labilising effect of the OH ligand.  相似文献   

19.
Two azido-coordinated Schiff base Cu(II) complexes with the formulae [Cu(L1)(N3)]·MeOH and [Cu(L2)(μ1,1-N3)] n , where L1 is the deprotonated form of 2-chloro-2-[(2-ethylaminoethylimino)methyl]phenol, and L2 is the deprotonated form of 2,4-dibromo-6-[(2-dimethylaminoethylimino)methyl]phenol, have been synthesized and characterized by physico-chemical and spectroscopic methods. The X-ray crystal structures of both complexes have been determined. The Cu atom in [Cu(L1)(N3)]·MeOH is four-coordinate in a square planar geometry, while [Cu(L2)(μ1,1-N3)] n is five-coordinate with a square pyramidal geometry. The molecules in [Cu(L1)(N3)]·MeOH are linked by intermolecular O–H···O and N–H···O hydrogen bonds, forming dimers. The molecules in [Cu(L2)(μ1,1-N3)] n are linked through end-on azido bridges, forming one-dimensional chains. The xanthine oxidase inhibitory activities of both complexes were evaluated.  相似文献   

20.
Complexes cis-[ReOX2(msa)(PPh3)]?[X?=?Cl(1), I(2)] were prepared from trans-[ReOCl3(PPh3)2] or trans-[ReOI2(OEt)(PPh3)2] with 2-(1-iminoethyl)phenol (Hmsa) in acetonitrile. An X-ray crystallographic study shows that the bonding distances and angles in 1 and 2 are nearly identical, and that the two halides in each complex are coordinated cis to each other in the equatorial plane cis to the oxo group. Rhenium(V) complexes with cis diiodides are rare. All bonding distances and angles are in the expected ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号