首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On the spectral characterization of some unicyclic graphs   总被引:1,自引:0,他引:1  
Let H(n;q,n1,n2) be a graph with n vertices containing a cycle Cq and two hanging paths Pn1 and Pn2 attached at the same vertex of the cycle. In this paper, we prove that except for the A-cospectral graphs H(12;6,1,5) and H(12;8,2,2), no two non-isomorphic graphs of the form H(n;q,n1,n2) are A-cospectral. It is proved that all graphs H(n;q,n1,n2) are determined by their L-spectra. And all graphs H(n;q,n1,n2) are proved to be determined by their Q-spectra, except for graphs with a being a positive even number and with b≥4 being an even number. Moreover, the Q-cospectral graphs with these two exceptions are given.  相似文献   

2.
An edge-ordering of a graph G=(V,E) is a one-to-one function f from E to a subset of the set of positive integers. A path P in G is called an f-ascent if f increases along the edge sequence of P. The heighth(f) of f is the maximum length of an f-ascent in G.In this paper we deal with computational problems concerning finding ascents in graphs. We prove that for a given edge-ordering f of a graph G the problem of determining the value of h(f) is NP-hard. In particular, the problem of deciding whether there is an f-ascent containing all the vertices of G is NP-complete. We also study several variants of this problem, discuss randomized and deterministic approaches and provide an algorithm for the finding of ascents of order at least k in graphs of order n in running time O(4knO(1)).  相似文献   

3.
Given a graph G and integers p,q,d1 and d2, with p>q, d2>d1?1, an L(d1,d2;p,q)-labeling of G is a function f:V(G)→{0,1,2,…,n} such that |f(u)−f(v)|?p if dG(u,v)?d1 and |f(u)−f(v)|?q if dG(u,v)?d2. A k-L(d1,d2;p,q)-labeling is an L(d1,d2;p,q)-labeling f such that maxvV(G)f(v)?k. The L(d1,d2;p,q)-labeling number ofG, denoted by , is the smallest number k such that G has a k-L(d1,d2;p,q)-labeling. In this paper, we give upper bounds and lower bounds of the L(d1,d2;p,q)-labeling number for general graphs and some special graphs. We also discuss the L(d1,d2;p,q)-labeling number of G, when G is a path, a power of a path, or Cartesian product of two paths.  相似文献   

4.
For a given permutation matrix P, let fP(n) be the maximum number of 1-entries in an n×n(0,1)-matrix avoiding P and let SP(n) be the set of all n×n permutation matrices avoiding P. The Füredi-Hajnal conjecture asserts that cP:=limn→∞fP(n)/n is finite, while the Stanley-Wilf conjecture asserts that is finite.In 2004, Marcus and Tardos proved the Füredi-Hajnal conjecture, which together with the reduction introduced by Klazar in 2000 proves the Stanley-Wilf conjecture.We focus on the values of the Stanley-Wilf limit (sP) and the Füredi-Hajnal limit (cP). We improve the reduction and obtain which decreases the general upper bound on sP from sP?constconstO(klog(k)) to sP?constO(klog(k)) for any k×k permutation matrix P. In the opposite direction, we show .For a lower bound, we present for each k a k×k permutation matrix satisfying cP=Ω(k2).  相似文献   

5.
Consider a matroid M=(E,B), where B denotes the family of bases of M, and assign a color c(e) to every element eE (the same color can go to more than one element). The palette of a subset F of E, denoted by c(F), is the image of F under c. Assume also that colors have prices (in the form of a function π(?), where ? is the label of a color), and define the chromatic price as: π(F)=∑?∈c(F)π(?). We consider the following problem: find a base BB such that π(B) is minimum. We show that the greedy algorithm delivers a lnr(M)-approximation of the unknown optimal value, where r(M) is the rank of matroid M. By means of a reduction from SETCOVER, we prove that the lnr(M) ratio cannot be further improved, even in the special case of partition matroids, unless . The results apply to the special case where M is a graphic matroid and where the prices π(?) are restricted to be all equal. This special case was previously known as the minimum label spanning tree (MLST) problem. For the MLST, our results improve over the ln(n-1)+1 ratio achieved by Wan, Chen and Xu in 2002. Inspired by the generality of our results, we study the approximability of coloring problems with different objective function π(F), where F is a common independent set on matroids M1,…,Mk and, more generally, to independent systems characterized by the k-for-1 property.  相似文献   

6.
Given a graph G, a function f:V(G)→{1,2,…,k} is a k-ranking of G if f(u)=f(v) implies every u-v path contains a vertex w such that f(w)>f(u). A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. The arank number of a graph, denoted ψr(G), is the largest k such that G has a minimal k-ranking. We present new results involving minimal k-rankings of paths. In particular, we determine ψr(Pn), a problem posed by Laskar and Pillone in 2000.  相似文献   

7.
Let ?>0. A continuous linear operator T:C(X)?C(Y) is said to ?-preserve disjointness if ‖(Tf)(Tg)‖?, whenever f,gC(X) satisfy ‖f=‖g=1 and fg≡0. In this paper we continue our study of the minimal interval where the possible maximal distance from a norm one operator which ?-preserves disjointness to the set of weighted composition maps may lie. We provide sharp bounds for both the finite and the infinite case, which turn out to be completely different.  相似文献   

8.
We consider a class of hyperbolic 3-orbifoldsO(α/β); the underlying topological space of such an orbifold is the 3-sphere and the singular set is obtained by adding the two standard (upper and lower) unknotting tunnels to a 2-bridge linkL(α/β) (and associating branching order two to both unknotting tunnels). These 3-orbifolds are extremal with respect to the notion of Heegaard genus or Heegaard number of 3-orbifolds; it is to be expected that they are also extremal with respect to the volume, that is the smallest volume hyperbolic 3-orbifolds should belong to this or some closely related class. We show that an orbifoldO(α/β) has a uniqueD 2-covering by an orbifold n(α/β) wose space is the 3-sphere and whose singular set is the same 2-bridge linkL(α/β) used for the construction ofO(α/β); moreoverO(α/β) is hyperbolic if and only if n(α/β) is hyperbolic. As the volumes of the orbifolds n(α/β) are known resp. can be computed, this allows to compute the volumes of the orbifoldsO(α/β). The problem of computation of volumes remains open for some closely related classes of 3-orbifolds which are also extremal with respect to the Heegaard genus (for example associating a branching order bigger than two to one or both unknotting tunnels).  相似文献   

9.
For a given graph G of order n, a k-L(2,1)-labelling is defined as a function f:V(G)→{0,1,2,…k} such that |f(u)-f(v)|?2 when dG(u,v)=1 and |f(u)-f(v)|?1 when dG(u,v)=2. The L(2,1)-labelling number of G, denoted by λ(G), is the smallest number k such that G has a k-L(2,1)-labelling. The hole index ρ(G) of G is the minimum number of integers not used in a λ(G)-L(2,1)-labelling of G. We say G is full-colorable if ρ(G)=0; otherwise, it will be called non-full colorable. In this paper, we consider the graphs with λ(G)=2m and ρ(G)=m, where m is a positive integer. Our main work generalized a result by Fishburn and Roberts [No-hole L(2,1)-colorings, Discrete Appl. Math. 130 (2003) 513-519].  相似文献   

10.
A digraph of order n is hypotraceable if it is nontraceable but all its induced subdigraphs of order n−1 are traceable. Grötschel et al. (1980) [M. Grötschel, C. Thomassen, Y. Wakabayashi, Hypotraceable digraphs, J. Graph Theory 4 (1980) 377–381] constructed an infinite family of hypotraceable oriented graphs, the smallest of which has order 13. We show that there exist hypotraceable oriented graphs of order n for every n≥8 except possibly for n=9,11 and that is the only one of order less than 8.Furthermore, we determine all the hypotraceable oriented graphs of order 8 and explain the relevance of these results to the problem of determining, for given k≥2, the maximum order of nontraceable oriented digraphs each of whose induced subdigraphs of order k is traceable.  相似文献   

11.
Kenta Ozeki 《Discrete Mathematics》2009,309(13):4266-4269
Win, in 1975, and Jackson and Wormald, in 1990, found the best sufficient conditions on the degree sum of a graph to guarantee the properties of “having a k-tree” and “having a k-walk”, respectively. The property of “being prism hamiltonian” is an intermediate property between “having a 2-tree” and “having a 2-walk”. Thus, it is natural to ask what is the best degree sum condition for graphs to be prism hamiltonian. As an answer to this problem, in this paper, we show that a connected graph G of order n with σ3(G)≥n is prism hamiltonian. The degree sum condition “σ3(G)≥n” is best possible.  相似文献   

12.
A complete partition of a graph G is a partition of its vertex set in which any two distinct classes are connected by an edge. Let cp(G) denote the maximum number of classes in a complete partition of G. This measure was defined in 1969 by Gupta [19], and is known to be NP-hard to compute for several classes of graphs. We obtain essentially tight lower and upper bounds on the approximability of this problem. We show that there is a randomized polynomial-time algorithm that given a graph G with n vertices, produces a complete partition of size Ω(cp(G)/√lgn). This algorithm can be derandomized. We show that the upper bound is essentially tight: there is a constant C > 1, such that if there is a randomized polynomial-time algorithm that for all large n, when given a graph G with n vertices produces a complete partition into at least C·cp(G)/√lgn classes, then NP ⊆ RTime(n O(lg lg n)). The problem of finding a complete partition of a graph is thus the first natural problem whose approximation threshold has been determined to be of the form Θ((lgn) c ) for some constant c strictly between 0 and 1. The work reported here is a merger of the results reported in [30] and [21].  相似文献   

13.
Let μ be a measure on ℝn that satisfies the estimate μ(B r(x))≤cr α for allx ∈n and allr ≤ 1 (B r(x) denotes the ball of radius r centered atx. Let ϕ j,k (ɛ) (x)=2 nj2ϕ(ɛ)(2 j x-k) be a wavelet basis forj ∈ ℤ, κ ∈ ℤn, and ∈ ∈E, a finite set, and letP j (T)=Σɛ,k <T j,k (ɛ) j,k (ɛ) denote the associated projection operators at levelj (T is a suitable measure or distribution). IffLs p(dμ) for 1 ≤p ≤ ∞, we show thatP j(f dμ) ∈ Lp(dx) and ||P j (fdμ)||L p(dx)c2 j((n-α)/p′))||f||L p(dμ) for allj ≥ 0. We also obtain estimates for the limsup and liminf of ||P j (fdμ)||L p(dx) under more restrictive hypotheses. Communicated by Guido Weiss  相似文献   

14.
A path bundle is a set of 2a paths in an n-cube, denoted Qn, such that every path has the same length, the paths partition the vertices of Qn, the endpoints of the paths induce two subcubes of Qn, and the endpoints of each path are complements. This paper shows that a path bundle exists if and only if n>0 is odd and 0?a?n-⌈log2(n+1)⌉.  相似文献   

15.
An L(h,k)-labeling of a graph G is an integer labeling of vertices of G, such that adjacent vertices have labels which differ by at least h, and vertices at distance two have labels which differ by at least k. The span of an L(h,k)-labeling is the difference between the largest and the smallest label. We investigate L(h,k)-labelings of trees of maximum degree Δ, seeking those with small span. Given Δ, h and k, span λ is optimal for the class of trees of maximum degree Δ, if λ is the smallest integer such that every tree of maximum degree Δ has an L(h,k)-labeling with span at most λ. For all parameters Δ,h,k, such that h<k, we construct L(h,k)-labelings with optimal span. We also establish optimal span of L(h,k)-labelings for stars of arbitrary degree and all values of h and k.  相似文献   

16.
Given a communication network (modelled as a graph), a message is transmitted to at one vertex transmits to all other vertices in such a way that each message transmission takes one time unit and each vertex participates in at most one transmission to its neighbor per time step. We call this process broadcasting. For t≥0, let Bt(n) be the number of edges in the sparsest possible graph on n vertices in which broadcasting can be accomplished in ⌈log2n⌉+t steps regardless of the originator. Shastri [A. Shastri, Time-relaxed broadcasting in communication networks, Discrete Applied mathematics 83 (1998) 263-278] conjectured that B1(22)=24 and B2(n)=n+1 for 25≤n≤29. In this paper, we show that B1(22)=24, B2(n)=n for 25≤n≤28 and 37≤n≤44, B2(n)≤n+1 for 45≤n≤49, B2(n)≤n+4 for 50≤n≤56, and B3(n)=n for 55≤n≤64.  相似文献   

17.
For a finite undirected graph G=(V,E) and positive integer k≥1, an edge set ME is a distance-k matching if the pairwise distance of edges in M is at least k in G. For k=1, this gives the usual notion of matching in graphs, and for general k≥1, distance-k matchings were called k-separated matchings by Stockmeyer and Vazirani. The special case k=2 has been studied under the names induced matching (i.e., a matching which forms an induced subgraph in G) by Cameron and strong matching by Golumbic and Laskar in various papers.Finding a maximum induced matching is NP-complete even on very restricted bipartite graphs and on claw-free graphs but it can be done efficiently on various classes of graphs such as chordal graphs, based on the fact that an induced matching in G corresponds to an independent vertex set in the square L(G)2 of the line graph L(G) of G which, by a result of Cameron, is chordal for any chordal graph G.We show that, unlike for k=2, for a chordal graph G, L(G)3 is not necessarily chordal, and finding a maximum distance-3 matching, and more generally, finding a maximum distance-(2k+1) matching for k≥1, remains NP-complete on chordal graphs. For strongly chordal graphs and interval graphs, however, the maximum distance-k matching problem can be solved in polynomial time for every k≥1. Moreover, we obtain various new results for maximum induced matchings on subclasses of claw-free graphs.  相似文献   

18.
A k-dimensional box is the Cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line. The boxicity of a graph G, denoted as , is the minimum integer k such that G can be represented as the intersection graph of a collection of k-dimensional boxes. A unit cube in k-dimensional space or a k-cube is defined as the Cartesian product R1×R2×?×Rk where each Ri is a closed interval on the real line of the form [ai,ai+1]. The cubicity of G, denoted as , is the minimum integer k such that G can be represented as the intersection graph of a collection of k-cubes. The threshold dimension of a graph G(V,E) is the smallest integer k such that E can be covered by k threshold spanning subgraphs of G. In this paper we will show that there exists no polynomial-time algorithm for approximating the threshold dimension of a graph on n vertices with a factor of O(n0.5−?) for any ?>0 unless NP=ZPP. From this result we will show that there exists no polynomial-time algorithm for approximating the boxicity and the cubicity of a graph on n vertices with factor O(n0.5−?) for any ?>0 unless NP=ZPP. In fact all these hardness results hold even for a highly structured class of graphs, namely the split graphs. We will also show that it is NP-complete to determine whether a given split graph has boxicity at most 3.  相似文献   

19.
Denis S. Krotov   《Discrete Mathematics》2008,308(22):5289-5297
An n-ary operation Q:ΣnΣ is called an n-ary quasigroup of order |Σ| if in the relation x0=Q(x1,…,xn) knowledge of any n elements of x0,…,xn uniquely specifies the remaining one. Q is permutably reducible if Q(x1,…,xn)=P(R(xσ(1),…,xσ(k)),xσ(k+1),…,xσ(n)) where P and R are (n-k+1)-ary and k-ary quasigroups, σ is a permutation, and 1<k<n. An m-ary quasigroup S is called a retract of Q if it can be obtained from Q or one of its inverses by fixing n-m>0 arguments. We prove that if the maximum arity of a permutably irreducible retract of an n-ary quasigroup Q belongs to {3,…,n-3}, then Q is permutably reducible.  相似文献   

20.
Assume that each vertex of a graph G is assigned a nonnegative integer weight and that l and u are nonnegative integers. One wishes to partition G into connected components by deleting edges from G so that the total weight of each component is at least l and at most u. Such an “almost uniform” partition is called an (l,u)-partition. We deal with three problems to find an (l,u)-partition of a given graph; the minimum partition problem is to find an (l,u)-partition with the minimum number of components; the maximum partition problem is defined analogously; and the p-partition problem is to find an (l,u)-partition with a fixed number p of components. All these problems are NP-complete or NP-hard, respectively, even for series-parallel graphs. In this paper we show that both the minimum partition problem and the maximum partition problem can be solved in time O(u4n) and the p-partition problem can be solved in time O(p2u4n) for any series-parallel graph with n vertices. The algorithms can be extended for partial k-trees, that is, graphs with bounded tree-width.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号