首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cartesian product of a graph G with K2 is called a prism over G. We extend known conditions for hamiltonicity and pancyclicity of the prism over a graph G to the cartesian product of G with paths, cycles, cliques and general graphs. In particular we give results involving cubic graphs and almost claw-free graphs.We also prove the following: Let G and H be two connected graphs. Let both G and H have a 2-factor. If Δ(G)≤g(H) and Δ(H)≤g(G) (we denote by g(F) the length of a shortest cycle in a 2-factor of a graph F taken over all 2-factorization of F), then GH is hamiltonian.  相似文献   

2.
A graph G is dot-critical if contracting any edge decreases the domination number. Nader Jafari Rad (2009) [3] posed the problem: Is it true that a connected k-dot-critical graph G with G=0? is 2-connected? In this note, we give a family of 1-connected 2k-dot-critical graph with G=0? and show that this problem has a negative answer.  相似文献   

3.
A graph is clique-Helly if any family of mutually intersecting (maximal) cliques has non-empty intersection, and it is hereditary clique-Helly (HCH) if its induced subgraphs are clique-Helly. The clique graph of a graph G is the intersection graph of its cliques, and G is self-clique if it is connected and isomorphic to its clique graph. We show that every HCH graph is an induced subgraph of a self-clique HCH graph, and give a characterization of self-clique HCH graphs in terms of their constructibility starting from certain digraphs with some forbidden subdigraphs. We also specialize this results to involutive HCH graphs, i.e. self-clique HCH graphs whose vertex-clique bipartite graph admits a part-switching involution.  相似文献   

4.
The clique graph of G, K(G), is the intersection graph of the family of cliques (maximal complete sets) of G. Clique-critical graphs were defined as those whose clique graph changes whenever a vertex is removed. We prove that if G has m edges then any clique-critical graph in K-1(G) has at most 2m vertices, which solves a question posed by Escalante and Toft [On clique-critical graphs, J. Combin. Theory B 17 (1974) 170-182]. The proof is based on a restatement of their characterization of clique-critical graphs. Moreover, the bound is sharp. We also show that the problem of recognizing clique-critical graphs is NP-complete.  相似文献   

5.
A circular-arc graphG is the intersection graph of a collection of arcs on the circle and such a collection is called a model of G. Say that the model is proper when no arc of the collection contains another one, it is Helly when the arcs satisfy the Helly Property, while the model is proper Helly when it is simultaneously proper and Helly. A graph admitting a Helly (resp. proper Helly) model is called a Helly (resp. proper Helly) circular-arc graph. The clique graphK(G) of a graph G is the intersection graph of its cliques. The iterated clique graphKi(G) of G is defined by K0(G)=G and Ki+1(G)=K(Ki(G)). In this paper, we consider two problems on clique graphs of circular-arc graphs. The first is to characterize clique graphs of Helly circular-arc graphs and proper Helly circular-arc graphs. The second is to characterize the graph to which a general circular-arc graph K-converges, if it is K-convergent. We propose complete solutions to both problems, extending the partial results known so far. The methods lead to linear time recognition algorithms, for both problems.  相似文献   

6.
Acyclic chromatic indices of planar graphs with large girth   总被引:1,自引:0,他引:1  
An acyclic edge coloring of a graph G is a proper edge coloring such that no bichromatic cycles are produced. The acyclic chromatic index a(G) of G is the smallest k such that G has an acyclic edge coloring using k colors.In this paper, we prove that every planar graph G with girth g(G) and maximum degree Δ has a(G)=Δ if there exists a pair (k,m)∈{(3,11),(4,8),(5,7),(8,6)} such that G satisfies Δk and g(G)≥m.  相似文献   

7.
We present a general framework to study enumeration algorithms for maximal cliques and maximal bicliques of a graph. Given a graph G, we introduce the notion of the transition graph T(G) whose vertices are maximal cliques of G and arcs are transitions between cliques. We show that T(G) is a strongly connected graph and characterize a rooted cover tree of T(G) which appears implicitly in [D.S. Johnson, M. Yannakakis, C.H. Papadimitriou, On generating all maximal independent sets, Information Processing Letters 27 (1988) 119-123; S. Tsukiyama, M. Ide, M. Aiyoshi, I. Shirawaka, A new algorithm for generating all the independent sets, SIAM Journal on Computing 6 (1977) 505-517]. When G is a bipartite graph, we show that the Galois lattice of G is a partial graph of T(G) and we deduce that algorithms based on the Galois lattice are a particular search of T(G). Moreover, we show that algorithms in [G. Alexe, S. Alexe, Y. Crama, S. Foldes, P.L. Hammer, B. Simeone, Consensus algorithms for the generation of all maximal bicliques, Discrete Applied Mathematics 145 (1) (2004) 11-21; L. Nourine, O. Raynaud, A fast algorithm for building lattices, Information Processing Letters 71 (1999) 199-204] generate maximal bicliques of a bipartite graph in O(n2) per maximal biclique, where n is the number of vertices in G. Finally, we show that under some specific numbering, the transition graph T(G) has a hamiltonian path for chordal and comparability graphs.  相似文献   

8.
The sphericity sph(G) of a graph G is the minimum dimension d for which G is the intersection graph of a family of congruent spheres in Rd. The edge clique cover number θ(G) is the minimum cardinality of a set of cliques (complete subgraphs) that covers all edges of G. We prove that if G has at least one edge, then sph(G)?θ(G). Our upper bound remains valid for intersection graphs defined by balls in the Lp-norm for 1?p?∞.  相似文献   

9.
The pair length of a graph G is the maximum positive integer k, such that the vertex set of G can be partitioned into disjoint pairs {x,x}, such that d(x,x)?k for every xV(G) and xy is an edge of G whenever xy is an edge. Chen asked whether the pair length of the cartesian product of two graphs is equal to the sum of their pair lengths. Our aim in this short note is to prove this result.  相似文献   

10.
The clique graph of a graph G is the graph obtained by taking the cliques of G as vertices, and two vertices are adjacent if and only if the corresponding cliques have a non-empty intersection. A graph is self-clique if it is isomorphic to its clique graph. We give a new characterization of the set of all connected self-clique graphs having all cliques but two of size 2.  相似文献   

11.
Let G be a planar graph of maximum degree 6. In this paper we prove that if G does not contain either a 6-cycle, or a 4-cycle with a chord, or a 5- and 6-cycle with a chord, then χ(G)=6, where χ(G) denotes the chromatic index of G.  相似文献   

12.
A greedy clique decomposition of a graph is obtained by removing maximal cliques from a graph one by one until the graph is empty. It has recently been shown that any greedy clique decomposition of a graph of ordern has at mostn 2/4 cliques. In this paper, we extend this result by showing that for any positive integerp, 3≤p any clique decomposisitioof a graph of ordern obtained by removing maximal cliques of order at leastp one by one until none remain, in which case the remaining edges are removed one by one, has at mostt p-1( n ) cliques. Heret p-1( n ) is the number of edges in the Turán graph of ordern, which has no complete subgraphs of orderp. In connection with greedy clique decompositions, P. Winkler conjectured that for any greedy clique decompositionC of a graphG of ordern the sum over the number of vertices in each clique ofC is at mostn 2/2. We prove this conjecture forK 4-free graphs and show that in the case of equality forC andG there are only two possibilities:
  1. G?K n/2,n/2
  2. G is complete 3-partite, where each part hasn/3 vertices.
We show that in either caseC is completely determined.  相似文献   

13.
In a search for triangle-free graphs with arbitrarily large chromatic numbers, Mycielski developed a graph transformation that transforms a graph G into a new graph μ(G), which is called the Mycielskian of G. This paper investigates the vertex-connectivity κ(μ(G)) and edge-connectivity κ(μ(G)) of μ(G) . We show that κ(μ(G))=min{δ(μ(G)),2κ(G)+1} and κ(μ(G))=δ(μ(G)).  相似文献   

14.
We define by minc{u,v}∈E(G)|c(u)−c(v)| the min-costMC(G) of a graph G, where the minimum is taken over all proper colorings c. The min-cost-chromatic numberχM(G) is then defined to be the (smallest) number of colors k for which there exists a proper k-coloring c attaining MC(G). We give constructions of graphs G where χ(G) is arbitrarily smaller than χM(G). On the other hand, we prove that for every 3-regular graph G, χM(G)≤4 and for every 4-regular line graph G, χM(G)≤5. Moreover, we show that the decision problem whether χM(G)=k is -hard for k≥3.  相似文献   

15.
Graph G is called cyclically orientable (CO) if it admits an orientation in which every simple chordless cycle is cyclically oriented. This family of graphs was introduced by Barot et al. [Cluster algebras of finite type and positive symmetrizable matrices, J. London Math. Soc. (3) 73 (2006) 545-564]. The authors obtained several nice characterizations of CO-graphs, being motivated primarily by their applications in cluster algebras. Here we obtain several new characterizations that provide algorithms for recognizing CO-graphs and obtaining their cyclic orientations in linear time. We show that the edge maximal CO-graphs are 2-trees; that is, G=(V,E) is a 2-tree if and only if G is CO and G=(V,E) is not CO whenever E is a proper subset of E.  相似文献   

16.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). Let Δ=Δ(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by Kn,n. Alon, McDiarmid and Reed observed that a(Kp−1,p−1)=p for every prime p. In this paper we prove that a(Kp,p)≤p+2=Δ+2 when p is prime. Basavaraju, Chandran and Kummini proved that a(Kn,n)≥n+2=Δ+2 when n is odd, which combined with our result implies that a(Kp,p)=p+2=Δ+2 when p is an odd prime. Moreover we show that if we remove any edge from Kp,p, the resulting graph is acyclically Δ+1=p+1-edge-colorable.  相似文献   

17.
We present a new representation of a chordal graph called the clique-separator graph, whose nodes are the maximal cliques and minimal vertex separators of the graph. We present structural properties of the clique-separator graph and additional properties when the chordal graph is an interval graph, proper interval graph, or split graph. We also characterize proper interval graphs and split graphs in terms of the clique-separator graph. We present an algorithm that constructs the clique-separator graph of a chordal graph in O(n3) time and of an interval graph in O(n2) time, where n is the number of vertices in the graph.  相似文献   

18.
Completions of partial elliptic matrices are studied. Given an undirected graph G, it is shown that every partial elliptic matrix with graph G can be completed to an elliptic matrix if and only if the maximal cliques of G are pairwise disjoint. Further, given a partial elliptic matrix A with undirected graph G, it is proved that if G is chordal and each specified principal submatrix defined by a pair of intersecting maximal cliques is nonsingular, then A can be completed to an elliptic matrix. Conversely, if G is nonchordal or if the regularity condition is relaxed, it is shown that there exist partial elliptic matrices which are not completable to an elliptic matrix. In the process we obtain several results concerning chordal graphs that may be of independent interest.  相似文献   

19.
Let T be any tree of order d≥1. We prove that every connected graph G with minimum degree d contains a subtree T isomorphic to T such that GV(T) is connected.  相似文献   

20.
A graph G is said to be very strongly perfect if for each induced subgraph H of G, each vertex of H belongs to a stable set that meets all maximal cliques of H. Meyniel proved that a graph is perfect if each of its odd cycles with at least five vertices contains at least two chords. Nowadays, such a graph is called a Meyniel graph. We prove that, as conjectured by Meyniel, a graph is very strongly perfect if and only if it is a Meyniel graph. We also design a polynomial-time algorithm which, given a Meyniel graph G and a vertex x of G, finds a stable set that contains x and meets all maximal cliques of G. We shall convert this algorithm into another polynomial-time algorithm which, given a Meyniel graph G, finds an optimal coloring of G, and a largest clique of G. Finally, we shall establish another property, related to perfection, of Meyniel graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号