首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integer programs defined by two equations with two free integer variables and nonnegative continuous variables have three types of nontrivial facets: split, triangle or quadrilateral inequalities. In this paper, we compare the strength of these three families of inequalities. In particular we study how well each family approximates the integer hull. We show that, in a well defined sense, triangle inequalities provide a good approximation of the integer hull. The same statement holds for quadrilateral inequalities. On the other hand, the approximation produced by split inequalities may be arbitrarily bad.  相似文献   

2.
Gomory mixed-integer (GMI) cuts generated from optimal simplex tableaus are known to be useful in solving mixed-integer programs. Further, it is well-known that GMI cuts can be derived from facets of Gomory’s master cyclic group polyhedron and its mixed-integer extension studied by Gomory and Johnson. In this paper we examine why cutting planes derived from other facets of master cyclic group polyhedra (group cuts) do not seem to be as useful when used in conjunction with GMI cuts. For many practical problem instances, we numerically show that once GMI cuts from different rows of the optimal simplex tableau are added to the formulation, all other group cuts from the same tableau rows are satisfied.  相似文献   

3.
In this paper, we address the following probabilistic version (PSC) of the set covering problem: where A is a 0-1 matrix, is a random 0-1 vector and is the threshold probability level. We introduce the concepts of p-inefficiency and polarity cuts. While the former is aimed at deriving an equivalent MIP reformulation of (PSC), the latter is used as a strengthening device to obtain a stronger formulation. Simplifications of the MIP model which result when one of the following conditions hold are briefly discussed: A is a balanced matrix, A has the circular ones property, the components of are pairwise independent, the distribution function of is a stationary distribution or has the disjunctive shattering property. We corroborate our theoretical findings by an extensive computational experiment on a test-bed consisting of almost 10,000 probabilistic instances. This test-bed was created using deterministic instances from the literature and consists of probabilistic variants of the set covering model and capacitated versions of facility location, warehouse location and k-median models. Our computational results show that our procedure is orders of magnitude faster than any of the existing approaches to solve (PSC), and in many cases can reduce hours of computing time to a fraction of a second. Anureet Saxena’s research was supported by the National Science Foundation through grant #DMI-0352885 and by the Office of Naval Research through contract N00014-03-1-0133. Vineet Goyal’s research was supported in part by NSF grant CCF-0430751 and ITR grant CCR-0122581.  相似文献   

4.
Recent advances on the understanding of valid inequalities from the infinite group relaxation has opened the possibility of finding a computationally effective extension to GMI cuts. In this paper, we investigate the computational impact of using a subclass of minimally valid inequalities from this relaxation on a wide set of instances.  相似文献   

5.
Intersection cuts were introduced by Balas and the corner polyhedron by Gomory. Balas showed that intersection cuts are valid for the corner polyhedron. In this paper we show that, conversely, every nontrivial facet-defining inequality for the corner polyhedron is an intersection cut.  相似文献   

6.
This paper focuses on guillotine cuts which often arise in real-life cutting stock problems. In order to construct a solution verifying guillotine constraints, the first step is to know how to determine whether a given cutting pattern is a guillotine pattern. For this purpose, we first characterize guillotine patterns by proving a necessary and sufficient condition. Then, we propose a polynomial algorithm to check this condition. Based on this mathematical characterization of guillotine patterns, we then show that guillotine constraints can be formulated into linear inequalities. The performance of the algorithm to check guillotine cutting patterns is evaluated by means of computational results.  相似文献   

7.
This is a summary of the main results presented in the author’s PhD thesis, supervised by D. Conforti and P. Beraldi and defended on March 2005. The thesis, written in English, is available from the author upon request. It describes one of the very few existing implementations of a method for solving stochastic mixed integer nonlinear programming problems based on deterministic global optimization. In order to face the computational challenge involved in the solution of such multi-scenario nonconvex problems, a branch and bound approach is proposed that exploits the peculiar structure of stochastic programming problem.  相似文献   

8.
9.
Anderson et al. (2005) [1] show that for a polyhedral mixed integer set defined by a constraint system Axb, along with integrality restrictions on some of the variables, any split cut is in fact a split cut for a basic relaxation, i.e., one defined by a subset of linearly independent constraints. This result implies that any split cut can be obtained as an intersection cut. Equivalence between split cuts obtained from simple disjunctions of the form xj≤0 or xj≥1 and intersection cuts was shown earlier for 0/1-mixed integer sets by Balas and Perregaard (2002) [4]. We give a short proof of the result of Anderson, Cornuéjols and Li using the equivalence between mixed integer rounding (MIR) cuts and split cuts.  相似文献   

10.
11.
In 1988, Nemhauser and Wolsey introduced the concept of MIR inequality for mixed integer linear programs. In 1998, Wolsey gave another definition of MIR inequalities. This note points out that the natural concepts of MIR closures derived from these two definitions are distinct. Dash, Günlük and Lodi made the same observation independently.  相似文献   

12.
We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization (MISOCO) problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far been restricted to the case in which the intersection of the hyperplanes and the feasible set is bounded. Using a similar technique, we show that one can extend our previous results to the case in which that intersection is unbounded. We provide a complete characterization in closed form of the conic inequalities required to describe the convex hull when the hyperplanes defining the disjunction are parallel.  相似文献   

13.
Various techniques for building relaxations and generating valid inequalities for pure or mixed integer programming problems without special structure are reviewed and compared computationally. Besides classical techniques such as Gomory cuts, Mixed Integer Rounding cuts, lift-and-project and reformulation–linearization techniques, a new variant is also investigated: the use of the relaxation corresponding to the intersection of simple disjunction polyhedra (i.e. the so-called elementary closure of lift-and-project cuts). Systematic comparative computational results are reported on series of test problems including multidimensional knapsack problems (MKP) and MIPLIB test problems. From the results obtained, the relaxation based on the elementary closure of lift-and-project cuts appears to be one of the most promising.  相似文献   

14.
In this paper we study a new variant of the minimum energy broadcast (MEB) problem, namely the probabilistic MEB (PMEB). The objective of the classic MEB problem is to assign transmission powers to the nodes of a wireless network is such a way that the total energy dissipated on the network is minimized, while a connected broadcasting structure is guaranteed by the assigned transmission powers. In the new variant of the problem treated in this paper, node failure is taken into account, aiming at providing solutions with a chosen reliability level for the broadcasting structure. Three mixed integer linear programming formulations for the new problem are presented, together with efficient formulation-dependent methods for their solution. Computational results are proposed and discussed. One method emerges as the most promising one under realistic settings. It is able to handle problems with up to fifty nodes.  相似文献   

15.
16.
A probabilistic analysis of the minimum cardinality set covering problem (SCP) is developed, considering a stochastic model of the (SCP), withn variables andm constraints, in which the entries of the corresponding (m, n) incidence matrix are independent Bernoulli distributed random variables, each with constant probabilityp of success. The behaviour of the optimal solution of the (SCP) is then investigated as bothm andn grow asymptotically large, assuming either an incremental model for the evolution of the matrix (for each size, the matrixA is obtained bordering a matrix of smaller size by new columns and rows) or an independent one (for each size, an entirely new set of entries forA are considered). Two functions ofm are identified, which represent a lower and an upper bound onn in order the (SCP) to be a.e. feasible and not trivial. Then, forn lying within these bounds, an asymptotic formula for the optimum value of the (SCP) is derived and shown to hold a.e.The performance of two simple randomized algorithms is then analyzed. It is shown that one of them produces a solution value whose ratio to the optimum value asymptotically approaches 1 a.e. in the incremental model, but not in the independent one, in which case the ratio is proved to be tightly bounded by 2 a.e. Thus, in order to improve the above result, a second randomized algorithm is proposed, for which it is proved that the ratio between the approximate solution value and the optimum approaches 1 a.e. also in the independent model.  相似文献   

17.
In this note, we present a simple geometric argument to determine a lower bound on the split rank of intersection cuts. As a first step of this argument, a polyhedral subset of the lattice-free convex set that is used to generate the intersection cut is constructed. We call this subset the restricted lattice-free set. It is then shown that élog2 (l)ù{\lceil \log_2 (l)\rceil} is a lower bound on the split rank of the intersection cut, where l is the number of integer points lying on the boundary of the restricted lattice-free set satisfying the condition that no two points lie on the same facet of the restricted lattice-free set. The use of this result is illustrated by obtaining a lower bound of élog2( n+1) ù{\lceil \log_2( n+1) \rceil} on the split rank of n-row mixing inequalities.  相似文献   

18.
We introduce a probabilistic extension of propositional intuitionistic logic. The logic allows making statements such as Psα, with the intended meaning “the probability of truthfulness of α is at least s”. We describe the corresponding class of models, which are Kripke models with a naturally arising notion of probability, and give a sound and complete infinitary axiomatic system. We prove that the logic is decidable.  相似文献   

19.
A finite algorithm is presented in this study for solving Bilinear programs. This is accomplished by developing a suitable cutting plane which deletes at least a face of a polyhedral set. At an extreme point, a polar cut using negative edge extensions is used. At other points, disjunctive cuts are adopted. Computational experience on test problems in the literature is provided.This paper is based upon work supported by the National Science Foundation under Grant No. ENG-77-23683.  相似文献   

20.
We study several ways of obtaining valid inequalities for mixed integer programs. We show how inequalities obtained from a disjunctive argument can be represented by superadditive functions and we show how the superadditive inequalities relate to Gomory's mixed integer cuts. We also show how all valid inequalities for mixed 0–1 programs can be generated recursively from a simple subclass of the disjunctive inequalities.The research of this author was supported by NSF Contract No. ECS-8540898.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号