首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The configuration of the reverse logistics network is a complex problem comprising the determination of the optimal sites and capacities of collection centers, inspection centers, remanufacturing facilities, and/or recycling plants. In this paper, we propose a profit maximization modeling framework for reverse logistics network design problems. We present a mixed-integer linear programming formulation that is flexible to incorporate most of the reverse network structures plausible in practice. In order to consider the possibility of making future adjustments in the network configuration to allow gradual changes in the network structure and in the capacities of the facilities, we consider a multi-period setting. We propose a multi-commodity formulation and use a reverse bill of materials in order to capture component commonality among different products and to have the flexibility to incorporate all plausible means in tackling product returns. The proposed general framework is justified by a case study in the context of reverse logistics network design for washing machines and tumble dryers in Germany. We conduct extensive parametric and scenario analysis to illustrate the potential benefits of using a dynamic model as opposed to its static counterpart, and also to derive a number of managerial insights.  相似文献   

2.
This paper develops a supply chain network game theory framework with multiple manufacturers/producers, with multiple manufacturing plants, who own distribution centers and distribute their products, which are distinguished by brands, to demand markets, while maximizing profits and competing noncooperatively. The manufacturers also may avail themselves of external distribution centers for storing their products and freight service provision. The manufacturers have capacities associated with their supply chain network links and the external distribution centers also have capacitated storage and distribution capacities for their links, which are shared among the manufacturers and competed for. We utilize a special case of the Generalized Nash Equilibrium problem, known as a variational equilibrium, in order to formulate and solve the problem. A case study on apple farmers in Massachusetts is provided with various scenarios, including a supply chain disruption, to illustrate the modeling and methodological framework as well as the potential benefits of outsourcing in this sector.  相似文献   

3.
4.
The expansion of telecommunication services has increased the number of users sharing network resources. When a given service is highly demanded, some demands may be unmet due to the limited capacity of the network links. Moreover, for such demands, telecommunication operators should pay penalty costs. To avoid rejecting demands, we can install more capacities in the existing network. In this paper we report experiments on the network capacity design for uncertain demand in telecommunication networks with integer link capacities. We use Poisson demands with bandwidths given by normal or log-normal distribution functions. The expectation function is evaluated using a predetermined set of realizations of the random parameter. We model this problem as a two-stage mixed integer program, which is solved using a stochastic subgradient procedure, the Barahona's volume approach and the Benders decomposition.  相似文献   

5.
It is an important issue to design some performance indexes in order to measure the performance for a telecommunication network. Network analysis is an available approach to solve the performance problem for a real-life system. We construct a two-commodity stochastic-flow network with unreliable nodes (arcs and nodes all have several possible capacities and may fail) to model the telecommunication network. In which, all types of commodity are transmitted through the same network simultaneously and compete the capacities. This paper defines the system capacity as a 2-tuple vector, and then proposes a performance index, the probability that the upper bound of the system capacity equals a demand vector subject to the budget constraint. An upper boundary point is a vector representing the capacities of arcs and nodes, and is the maximal vector exactly meeting the demand vector. A simple algorithm based on minimal cuts (or named MC-based algorithm) is then presented to generate all upper boundary points in order to evaluate the performance index. The storage and computational time complexity of this algorithm are also analyzed. The performance evaluation for the multicommodity case can be extended easily.  相似文献   

6.
An important problem in engineering is the identification of nonlinear systems, among them radial basis function neural networks (RBF-NN) using Gaussian activation functions models, which have received particular attention due to their potential to approximate nonlinear behavior. Several design methods have been proposed for choosing the centers and spread of Gaussian functions and training the RBF-NN. The selection of RBF-NN parameters such as centers, spreads, and weights can be understood as a system identification problem. This paper presents a hybrid training approach based on clustering methods (k-means and c-means) to tune the centers of Gaussian functions used in the hidden layer of RBF-NNs. This design also uses particle swarm optimization (PSO) for centers (local clustering search method) and spread tuning, and the Penrose–Moore pseudoinverse for the adjustment of RBF-NN weight outputs. Simulations involving this RBF-NN design to identify Lorenz’s chaotic system indicate that the performance of the proposed method is superior to that of the conventional RBF-NN trained for k-means and the Penrose–Moore pseudoinverse for multi-step ahead forecasting.  相似文献   

7.
Given a set of m resources and n tasks, the dynamic capacity acquisition and assignment problem seeks a minimum cost schedule of capacity acquisitions for the resources and the assignment of resources to tasks, over a given planning horizon of T periods. This problem arises, for example, in the integrated planning of locations and capacities of distribution centers (DCs), and the assignment of customers to the DCs, in supply chain applications. We consider the dynamic capacity acquisition and assignment problem in an environment where the assignment costs and the processing requirements for the tasks are uncertain. Using a scenario based approach, we develop a stochastic integer programming model for this problem. The highly non-convex nature of this model prevents the application of standard stochastic programming decomposition algorithms. We use a recently developed decomposition based branch-and-bound strategy for the problem. Encouraging preliminary computational results are provided.  相似文献   

8.
We consider a production planning problem for a jobshop with unreliable machines producing a number of products. There are upper and lower bounds on intermediate parts and an upper bound on finished parts. The machine capacities are modelled as finite state Markov chains. The objective is to choose the rate of production so as to minimize the total discounted cost of inventory and production. Finding an optimal control policy for this problem is difficult. Instead, we derive an asymptotic approximation by letting the rates of change of the machine states approach infinity. The asymptotic analysis leads to a limiting problem in which the stochastic machine capacities are replaced by their equilibrium mean capacities. The value function for the original problem is shown to converge to the value function of the limiting problem. The convergence rate of the value function together with the error estimate for the constructed asymptotic optimal production policies are established.  相似文献   

9.
From the quality management and decision making view point, reliability and unreliability are important indices to measure the quality level for a stochastic-flow network. In a multicommodity stochastic-flow network with unreliable nodes, the branches and nodes all have several possible capacities and may fail. Different types of the commodity, which are transmitted through the same network simultaneously, compete the capacities of branches and nodes. In this paper we first define the system capacity as a vector for a multicommodity stochastic-flow network with unreliable nodes. Then we design a performance index which is the probability that the upper bound of the system capacity is a given pattern subject to the budget constraint. It can be applied to evaluate the quality level for such a network. A simple approach based on minimal cuts is thus presented to evaluate the performance index.  相似文献   

10.
We consider a network design problem that arises in the cost-optimal design of last mile telecommunication networks. It extends the Connected Facility Location problem by introducing capacities on the facilities and links of the networks. It combines aspects of the capacitated network design problem and the single-source capacitated facility location problem. We refer to it as the Capacitated Connected Facility Location Problem. We develop a basic integer programming model based on single-commodity flows. Based on valid inequalities for the capacitated network design problem and the single-source capacitated facility location problem we derive several (new) classes of valid inequalities for the Capacitated Connected Facility Location Problem including cut set inequalities, cover inequalities and combinations thereof. We use them in a branch-and-cut framework and show their applicability and efficacy on a set of real-world instances.  相似文献   

11.
This paper presents a design methodology for IP networks under end-to-end Quality-of-Service (QoS) constraints. Particularly, we consider a more realistic problem formulation in which the link capacities of a general-topology packet network are discrete variables. This Discrete Capacity Assignment (DCA) problem can be classified as a constrained combinatorial optimization problem. A refined TCP/IP traffic modeling technique is also considered in order to estimate performance metrics for networks loaded by realistic traffic patterns. We propose a discrete variable Particle Swarm Optimization (PSO) procedure to find solutions for the problem. A simple approach called Bottleneck Link Heuristic (BLH) is also proposed to obtain admissible solutions in a fast way. The PSO performance, compared to that one of an exhaustive search (ES) procedure, suggests that the PSO algorithm provides a quite efficient approach to obtain (near) optimal solutions with small computational effort.  相似文献   

12.
This paper addresses the problem of short-term supply chain design using the idle capacities of qualified partners in order to seize a new market opportunity. The new market opportunity is characterized by a deterministic forecast over a planning horizon. The production–distribution process is assumed to be organized in stages or echelons, and each echelon may have several qualified partners willing to participate. Partners within the echelon may differ in idle production capacity, operational cost, storage cost, etc, and we assume that idle capacity may be different from one period to another period. The objective is to design a supply chain by selecting one partner from each echelon to meet the forecasted demand without backlog and best possible production and logistics costs over the given planning horizon. The overall problem is formulated as a large mixed integer linear programming problem. We develop a decomposition-based solution approach that is capable of overcoming the complexity and dimensionality associated with the problem. Numerical results are presented to support the effectiveness of this approach.  相似文献   

13.
New theoretical, methodological, and design frameworks for engaging classroom learning are supported by the highly interactive and group-centered capabilities of a new generation of classroom-based networks. In our analyses, networked teaching and learning are organized relative to a dialectic of (a) seeing mathematical and scientific structures as fully situated in sociocultural contexts and (b) seeing mathematics as a way of structuring our understanding of and design for group-situated teaching and learning. An engagement with this dialectic is intended to open up new possibilities for understanding the relations between content and social activity in classrooms. Features are presented for what we call generative design in terms of the respective “sides” of the dialectic. Our approach to generative design centers on the notion that classrooms have multiple agents, interacting at various levels of participation, and looks to make the best possible use of the plurality of emergent ideas found in classrooms. We close with an examination of how this dialectic framework also can support constructive critique of both sides of the dialectic in terms of content and pedagogy.  相似文献   

14.
We consider tandem queueing systems that can be formulated as a continuous-time Markov chain, and investigate how to maximize the throughput when the queue capacities are limited. We consider various constrained optimization problems where the decision variables are of one or more of the following types: (1) expected service times, (2) queue capacities, and (3) the number of servers at the respective stations. After surveying our previous studies of this kind, we open up consideration of three new problems by presenting some numerical results that should give some insight into the general form of the optimal design.  相似文献   

15.
We study further a problem that has arisen recently in the design of telecommunications transmission networks at France Telecom. Given a set of centers in a city or conglomeration linked together on a ring architecture, given the expected demands between the centers and an essentially unlimited availability of rings of fixed capacity on the network, assign demand pairs and corresponding add/drop multiplexers to the rings so as to satisfy the demands and minimize the number of ‘costly’ multiplexers installed.  相似文献   

16.
We consider a replenishment and disposal planning problem (RDPP) that arises in settings where customer returns are in as-good-as-new condition. These returns can be placed into inventory to satisfy future demand or can be disposed of, in case they lead to excess inventory. Our focus is on a multi-product setting with dynamic demands and returns over a finite planning horizon with explicit replenishment and disposal capacities. The problem is to determine the timing of replenishment and disposal setups, along with the associated quantities for the products, so as to minimize the total costs of replenishment, disposal, and inventory holding throughout the planning horizon. We examine two variants of the RDPP of interest both of which are specifically motivated by a spare part kitting application. In one variant, the replenishment capacity is shared among multiple products while the disposal capacity is product specific. In the other variant, both the replenishment and disposal capacities are shared among the products. We propose a Lagrangian Relaxation approach that relies on the relaxation of the capacity constraints and develop a smoothing heuristic that uses the solution of the Lagrangian problem to obtain near-optimal solutions. Our computational results demonstrate that the proposed approach is very effective in obtaining high-quality solutions with a reasonable computational effort.  相似文献   

17.
18.
We propose to extend the spherical separation approach, amply used in supervised classification, to clustering problems by assigning each datum to a suitable sphere. Our idea consists in designing a heuristic approach based on solving successive transportation problems aimed at providing the radii of the clustering spheres, whose centers are fixed in advance as the barycenters of each current cluster, similarly to the well known K-Means algorithm. Numerical results show the effectiveness of our proposal.  相似文献   

19.
This paper assumes the organization as a distributed decision network. It proposes an approach based on application and extension of information theory concepts, in order to analyze informational complexity in a decision network, due to interdependence between decision centers.Based on this approach, new quantitative concepts and definitions are proposed in order to measure the information in a decision center, based on Shannon entropy and its complement in possibility theory, U uncertainty. This approach also measures the quantity of interdependence between decision centers and informational complexity of decision networks.The paper presents an agent-based model of organization as a graph composed of decision centers. The application of the proposed approach is in analyzing and assessing a measure to the organization structure efficiency, based on informational communication view. The structure improvement, analysis of information flow in organization and grouping algorithms are investigated in this paper. The results obtained from this model in different systems as distributed decision networks, clarifies the importance of structure and information distribution sources effect’s on network efficiency.  相似文献   

20.
Here we are dealing with minimum cost flow problem on dynamic network flows with zero transit times and a new arc capacity, horizon capacity, which denotes an upper bound on the total flow traversing through on an arc during a pre-specified time horizon T. We develop a simple approach based on mathematical modelling attributes to solve the min-cost dynamic network flow problem where arc capacities and costs are time varying, and horizon capacities are considered. The basis of the method is simple and relies on the appropriate defining of polyhedrons, and in contrast to the other usual algorithms that use the notion of time expanded network, this method runs directly on the original network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号