首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Single-drop microextraction (SDME) followed by gas chromatography–mass spectrometry detection was used for the determination of some carbamate pesticides in water samples. The studied pesticides were thiofanox, carbofuran, pirimicarb, methiocarb, carbaryl, propoxur, desmedipham and phenmedipham. Two alternative sample introduction methods have been examined and compared; SDME followed by cool on-column injection (without derivatization) and SDME followed by in-microvial derivatization and splitless injection. Acetic anhydride was used as derivatization reagent. Parameters that affect the derivatization reaction yield and the extraction efficiency of the SDME method were studied and optimized. The analytical performances and possible applications of both approaches were investigated. Relative standard deviations for the studied compounds ranged from 3.2 to 8.3%. The detection limits obtained by the derivatization method were found to be in the range 3–35 ng/L. Using cool on-column injection (without derivatization), the detection limits were between 30 and 80 ng/L.  相似文献   

2.
Potassium formate was extracted from airport storm water runoff by headspace solid-phase microextraction (HS-SPME) and analyzed by GC–MS. Formate was transformed to formic acid by adding phosphoric acid. Subsequently, formic acid was derivatized to methyl formate by adding methanol. Using sodium [2H]formate (formate-d) as an internal standard, the relative standard deviation of the peak area ratio of formate (m/z 60) and formate-d (m/z 61) was 0.6% at a concentration of 208.5 mg L−1. Calibration was linear in the range of 0.5–208.5 mg L−1. The detection limit calculated considering the blank value was 0.176 mg L−1. The mean concentration of potassium formate in airport storm water runoff collected after surface de-icing operations was 86.9 mg L−1 (n = 11) with concentrations ranging from 15.1 mg L−1 to 228.6 mg L−1.  相似文献   

3.
Pre-concentration and determination of 8 phenolic compounds in water samples has been achieved by in situ derivatization and using a new liquid–liquid microextraction coupled GC–MS system. Microextraction efficiency factors have been investigated and optimized: 9 μL 1-undecanol microdrop exposed for 15 min floated on surface of a 10 mL water sample at 55 °C, stirred at 1200 rpm, low pH level and saturated salt conditions. Chromatographic problems associated with free phenols have been overcome by simultaneous in situ derivatization utilizing 40 μL of acetic anhydride and 0.5% (w/v) K2CO3. Under the selected conditions, pre-concentration factor of 235–1174, limit of detection of 0.005–0.68 μg/L (S/N = 3) and linearity range of 0.02–300 μg/L have been obtained. A reasonable repeatability (RSD ≤ 10.4%, n = 5) with satisfactory linearity (0.9995 ≥ r2 ≥ 0.9975) of results illustrated a good performance of the present method. The relative recovery of different natural water samples was higher than 84%.  相似文献   

4.
Sulfide and polysulfides are strong nucleophiles and reducing agents that participate in many environmentally significant processes such as the formation of sulfide minerals and volatile organic sulfur compounds. Their presence in drinking water distribution systems are of particular concern and need to be assessed, since these species consume disinfectants and dissolved oxygen, react with metal ions to produce insoluble metal sulfides, and cause taste and odour problems. The analysis of sulfide and polysulfides in drinking water distribution systems is challenging due to their low concentrations, thermal instability and their susceptibility to undergo oxidation and disproportionation reactions. This paper reports on the development and optimisation of a rapid, simple, and sensitive method for the determination of sulfide and polysulfides in drinking water distribution systems. The method uses methyl iodide to derivatise sulfide and polysulfides into their corresponding dimethyl(poly)sulfides, which are then extracted using solid-phase microextraction in the headspace mode and analysed by gas chromatography–mass spectrometry. Good sensitivity was achieved for the analysis of dimethyl(poly)sulfides, with detection limits ranging from 50 to 240 ng L−1. The method also demonstrated good precision (repeatability: 3–7%) and good linearity over two orders of magnitude. Matrix effects from raw drinking water containing organic carbon (3.8 mg L−1) and from sediment material from a drinking water distribution system were shown to have no interferences in the analysis of dimethyl(poly)sulfides. The method provides a rapid, robust, and reliable mean to analyse trace levels of sulfides and polysulfides in aqueous systems. The new method described here is more accessible and user-friendly than methods based on closed-loop stripping analysis, which have been traditionally used for the analysis of these compounds. The optimised method was used to analyse samples collected from various locations in a drinking water distribution system. Some of the samples were shown to contain inorganic polysulfides, and their presence was associated with high sediment density in the system and the absence of disinfectant residual in the bulk water.  相似文献   

5.
A simple and sensitive automated method for determination of aflatoxins (B1, B2, G1, and G2) in nuts, cereals, dried fruits, and spices was developed consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–mass spectrometry (LC–MS). Aflatoxins were separated within 8 min by high-performance liquid chromatography using a Zorbax Eclipse XDB-C8 column with methanol/acetonitrile (60/40, v/v): 5 mM ammonium formate (45:55) as the mobile phase. Electrospray ionization conditions in the positive ion mode were optimized for MS detection of aflatoxins. The pseudo-molecular ions [M+H]+ were used to detect aflatoxins in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample using a Supel-Q PLOT capillary column as an extraction device. The extracted aflatoxins were readily desorbed from the capillary by passage of the mobile phase, and no carryover was observed. Using the in-tube SPME LC–MS with SIM method, good linearity of the calibration curve (r > 0.9994) was obtained in the concentration range of 0.05–2.0 ng/mL using aflatoxin M1 as an internal standard, and the detection limits (S/N = 3) of aflatoxins were 2.1–2.8 pg/mL. The in-tube SPME method showed >23-fold higher sensitivity than the direct injection method (10 μL injection volume). The within-day and between-day precision (relative standard deviations) at the concentration of 1 ng/mL aflatoxin mixture were below 3.3% and 7.7% (n = 5), respectively. This method was applied successfully to analysis of food samples without interference peaks. The recoveries of aflatoxins spiked into nuts and cereals were >80%, and the relative standard deviations were <11.2%. Aflatoxins were detected at <10 ng/g in several commercial food samples.  相似文献   

6.
A simple and sensitive method for the determination of patulin in fruit juice and dried fruit samples was developed using a fully automated method consisting of in-tube solid-phase microextraction (SPME) coupled with liquid chromatography–mass spectrometry (LC–MS). Patulin was separated within 5 min by high-performance liquid chromatography using a Synergi MAX-RP 80A column and water/acetonitrile (80/20, v/v) as the mobile phase. Electrospray ionization conditions in the negative ion mode were optimized for MS detection of patulin. The pseudo-molecular ion [M−H] was used to detect patulin in selected ion monitoring (SIM) mode. The optimum in-tube SPME conditions were 25 draw/eject cycles of 40 μL of sample using a Carboxen 1006 PLOT capillary column as an extraction device. The extracted patulin was readily desorbed from the capillary by passage of the mobile phase, and no carry-over was observed. Using the in-tube SPME LC–MS with SIM method, good linearity of the calibration curve (r = 0.9996) was obtained in the concentration range of 0.5–20 ng/mL using 13C3-patulin as an internal standard, and the detection limit (S/N = 3) of patulin was 23.5 pg/mL. The in-tube SPME method showed >83-fold higher sensitivity than the direct injection method (10 μL injection volume). The within-day and between-day precision (relative standard deviations) were below 0.8% and 5.0% (n = 6), respectively. This method was applied successfully for the analysis of fruit juice and dried fruit samples without interference peaks. The recoveries of patulin spiked into apple juice were >92%, and the relative standard deviations were <4.5%. Patulin was detected at ng/mL levels in various commercial apple juice samples.  相似文献   

7.
The aqueous instability of pyrethroids and other compounds usually found in commercial pesticide formulations has been demonstrated in this work. Several types of sample treatment have been studied to avoid analyte losses during sample manipulation and storage. Analysis was performed by SPME–GC–MS. Addition of sodium thiosulfate to tap water prevented pyrethroid degradation as a result of oxidation by free chlorine. The amount added was optimized to minimize the effect of the salt on the analytical results. Analysis of samples that had been stored at 4 °C for several days revealed loss of some of the pyrethroids in the first period of storage. The effect of freezing the samples was studied and it was confirmed that samples could be stabilized for at least one week by freezing. Finally, addition of a miscible organic solvent, for example acetone, led to improvement of the analytical precision. The quality of the SPME–GC–MS method was studied. Linearity (R > 0.993), repeatability (RSD < 15%), and sensitivity (detection limits between 0.9 and 35 pg mL−1) were good. When the procedure was applied to real samples including run off and waste water some of the target compounds were identified and quantified.   相似文献   

8.
9.
A simple, precise and accurate method for the simultaneous determination of four UV filters and five polycyclic musks (PCMs) in aqueous samples was developed by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC–MS). The operating conditions affecting the performance of SPME-GC–MS, including fiber thickness, desorption time, pH, salinity, extraction time and temperature have been carefully studied. Under optimum conditions (30 μm PDMS fiber, 7 min desorption time, pH 7, 10% NaCl, 90 min extraction time at 24 °C), the correlation coefficients (r2) of the calibration curves of target compounds ranged from 0.9993 to 0.9999. The limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.2 to 9.6 ng L−1 and 0.7 to 32.0 ng L−1, respectively. The developed procedure was applied to the determinations of four UV filters and five PCMs in river water samples and internal standard was used for calibration to compensate the matrix effect. Good relative recoveries were obtained for spiked river water at low, medium and high levels. The proposed SPME method was compared with traditional SPE procedure and the results found in river water using both methods were in the same order of magnitude and both are quite agreeable.  相似文献   

10.
The aim of this study was to test and develop techniques for the detection and identification of volatile compounds released as degradation products by Baltic amber. During a preliminary investigation, the off-gassing of acidic volatiles was detected through the corrosion of lead coupons. The corrosive compounds released by the material were then identified as formic acid and acetic acid by headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. During an advanced investigation, based on the use of artificial ageing to initiate degradation of model amber samples in different microclimates, the detected formic acid and acetic acid off-gassing appeared to be more intense in a dry environment with normal oxygen concentration. The release of formic and acetic acids by the amber was likely the result of radical reactions which should be investigated in further studies.  相似文献   

11.
12.
Benzene is classified as a Group I carcinogen by the International Agency for Research on Cancer (IARC). The risk assessment for benzene can be performed by monitoring environmental and occupational air, as well as biological monitoring through biomarkers. The present work developed and validated methods for benzene analysis by GC/MS using SPME as the sampling technique for ambient air and breath. The results of the analysis of air in parks and avenues demonstrated a significant difference, with average values of 4.05 and 18.26 μg m−3, respectively, for benzene. Sampling of air in the occupational environment furnished an average of 3.41 and 39.81 μg m−3. Moreover, the correlations between ambient air and expired air showed a significant tendency to linearity (R 2 = 0.850 and R 2 = 0.879). The results obtained for two groups of employees (31.91 and 72.62 μg m−3) presented the same trend as that from the analysis of environmental air.  相似文献   

13.
Contamination by Brettanomyces is a frequent problem in many wineries that has a dramatic effect on wine aroma and hence its quality. The yeast Brettanomyces/Dekkera is involved in the formation of three important volatile ethylphenols—4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol—that transmit an unpleasant aroma to wine that has often been described as ‘medicinal’, ‘stable’ or ‘leather’. This study proposes an in situ derivatisation and headspace solid-phase microextraction– gas chromatography coupled to mass spectrometry method to determine the three ethylphenols in red Brettanomyces-tainted wines. The most important variables involved in the derivatisation (acetic anhydride and base concentration) and the extraction (extraction temperature and salt addition) processes were optimised by experimental design. The optimal conditions using 4 mL of wine in 20-mL sealed vials were 35 μL of acetic anhydride per millilitre of wine, 1 mL of 5.5% potassium carbonate solution and 0.9 g of sodium chloride and the extraction was performed with a divinylbenzene–carboxen–poly(dimethylsiloxane) fibre at 70 °C for 70 min. Then, the performance characteristics were established using wine samples spiked with the ethylphenols. For all compounds, the detection limits were below the odour threshold reported in the literature and they were between 2 and 17 μg L−1 for 4-ethylguaiacol and 4-ethylphenol, respectively. Intermediate precision (as relative standard deviation) was acceptable, with values ranging from 0.3 to 12.1%. Finally, the method was applied in the analysis of aged Brettanomyces-tainted wines.  相似文献   

14.
A fully automated method consisting of microextraction by packed sorbent (MEPS) coupled directly to programmed temperature vaporizer–gas chromatography–mass spectrometry (PTV–GC–MS) has been developed to determine the 12 chlorobenzene congeners (chlorobenzene; 1,2-, 1,3-, and 1,4-dichlorobenzene; 1,2,3-, 1,2,4-, and 1,3,5-trichlorobenzene; 1,2,3,4-, 1,2,3,5-, and 1,2,4,5-tetrachlorobenzene; pentachlorobenzene; and hexachlorobenzene) in water samples. The effects of the variables on MEPS extraction, using a C18 sorbent, and the instrumental PTV conditions were studied. The internal standard 1,4-dichlorobenzene d4 was used as a surrogate. The proposed method afforded good reproducibility, with relative standard deviations (RSD %) lower than 12 %. The limits of detection varied between 0.0003 μg L?1 for 1,2,3,4-tetrachlorobenzene and 0.07 μg L?1 for 1,3- and 1,4-dichlorobenzene, while those of quantification varied between 0.001 μg L?1 and 0.2 μg L?1 for the same compounds. Accuracy of the proposed method was confirmed by applying it to the determination of chlorobenzenes in different spiked water samples, including river, reservoir, and effluent wastewater.
Figure
Experimental setup for automated MEPS methodology  相似文献   

15.
A sensitive and solvent-free method for the determination of ten polycyclic aromatic hydrocarbons, namely, naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene and chrysene, with up to four aromatic rings, in milk samples using headspace solid-phase microextraction and gas chromatography–mass spectrometry detection has been developed. A polydimethylsiloxane–divinylbenzene fiber was chosen and used at 75°C for 60 min. Detection limits ranging from 0.2 to 5 ng L−1 were attained at a signal-to-noise ratio of 3, depending on the compound and the milk sample under analysis. The proposed method was applied to ten different milk samples and the presence of six of the analytes studied in a skimmed milk with vegetal fiber sample was confirmed. The reliability of the procedure was verified by analyzing two different certified reference materials and by recovery studies. Figure Milk is safe, healthy food  相似文献   

16.
A fully automated procedure using alkaline hydrolysis and headspace solid-phase microextraction (HS-SPME), followed by on-fiber derivatization and gas chromatographic–mass spectrometric (GC–MS) detection has been developed for determination of cannabinoids in hemp food samples. After addition of a deuterated internal standard, the sample was hydrolyzed with sodium hydroxide and submitted to direct HS-SPME. After absorption of analytes for on-fiber derivatization, the fiber was placed directly into the headspace of a second vial containing N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA), before GC–MS analysis. Linearity was good for 9-tetrahydrocannabinol (THC), cannabidiol, and cannabinol; regression coefficients were greater than 0.99. Depending on the characteristics of the matrix the detection limits obtained ranged between 0.01 and 0.17 mg kg–1 and the precision between 0.4 and 11.8%. In comparison with conventional liquid–liquid extraction this automated HS-SPME–GC–MS procedure is substantially faster. It is easy to perform, solvent-free, and sample quantities are minimal, yet it maintains the same sensitivity and reproducibility. The applicability was demonstrated by analysis of 30 hemp food samples. Cannabinoids were detected in all of the samples and it was possible to differentiate between drug-type and fiber-type Cannabis sativa L. In comparison with other studies relatively low THC concentrations between 0.01 and 15.53 mg kg–1 were determined.  相似文献   

17.
18.
In this paper a solid-phase microextraction–gas chromatography–mass spectrometry (SPME–GC–MS) method is proposed for a rapid analysis of some frequently prescribed selective serotonin re-uptake inhibitors (SSRI)—venlafaxine, fluvoxamine, mirtazapine, fluoxetine, citalopram, and sertraline—in urine samples. The SPME-based method enables simultaneous determination of the target SSRI after simple in-situ derivatization of some of the target compounds. Calibration curves in water and in urine were validated and statistically compared. This revealed the absence of matrix effect and, in consequence, the possibility of quantifying SSRI in urine samples by external water calibration. Intra-day and inter-day precision was satisfactory for all the target compounds (relative standard deviation, RSD, <14%) and the detection limits achieved were <0.4 ng mL–1 urine. The time required for the SPME step and for GC analysis (30 min each) enables high throughput. The method was applied to real urine samples from different patients being treated with some of these pharmaceuticals. Some SSRI metabolites were also detected and tentatively identified.  相似文献   

19.
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders which have a severe life-long effect on behavior and social functioning, and which are associated with metabolic abnormalities. Their diagnosis is on the basis of behavioral and developmental signs usually detected before three years of age, and there is no reliable biological marker. The objective of this study was to establish the volatile urinary metabolomic profiles of 24 autistic children and 21 healthy children (control group) to investigate volatile organic compounds (VOCs) as potential biomarkers for ASDs. Solid-phase microextraction (SPME) using DVB/CAR/PDMS sorbent coupled with gas chromatography–mass spectrometry was used to obtain the metabolomic information patterns. Urine samples were analyzed under both acid and alkaline pH, to profile a range of urinary components with different physicochemical properties. Multivariate statistics techniques were applied to bioanalytical data to visualize clusters of cases and to detect the VOCs able to differentiate autistic patients from healthy children. In particular, orthogonal projections to latent structures discriminant analysis (OPLS-DA) achieved very good separation between autistic and control groups under both acidic and alkaline pH, identifying discriminating metabolites. Among these, 3-methyl-cyclopentanone, 3-methyl-butanal, 2-methyl-butanal, and hexane under acid conditions, and 2-methyl-pyrazine, 2,3-dimethyl-pyrazine, and isoxazolo under alkaline pH had statistically higher levels in urine samples from autistic children than from the control group. Further investigation with a higher number of patients should be performed to outline the metabolic origins of these variables, define a possible association with ASDs, and verify the usefulness of these variables for early-stage diagnosis.
Figure
?  相似文献   

20.
A method is presented for qualitative identification of dissolved volatile organic compounds (VOCs) in non-drinking tap water samples based on applications of both solid-phase extraction (SPE) and gas chromatography–mass spectrometric (GC–MS) techniques. Water samples were collected and passed over a micro-column packed with acid treated active silica gel phase (pH = 2.6) for adsorption of dissolved organic species under this pH-condition. Silica-bound-organics were then divided into equal portions followed by suspension into organic solvents of different polarities such as methanol, ethanol, butan-1-ol, ethyl acetate, diethyl ether and chloroform. These suspensions were then automatically shaken for 1 h at room temperature. The organic extracts were subjected to GC–MS analysis under temperature programming conditions. The mass spectrum of each eluted chromatographic peak was library searched or manually interpreted to identify the correct name and structure. Blank solvent and silica samples were also subjected to the same GC–MS analysis for comparison.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号