首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Structures and electronic states of paramagnetic species in co-deposit film composed of 1,4,5,8-naphthalene-tetracarboxylic-dianhydride (NTCDA) and aluminum (Al) have been investigated by means of hybrid density functional theory (DFT) calculations to determine the species in detail. Al-NTCDA 1:1 complex, 1:3 Al3-NTCDA complex and an Al metal bridged dimer Al-(NTCDA)2 were examined as paramagnetic species of Al-NTCDA complexes. The simulated electron paramagnetic resonance (EPR) spectra of the 1:3 complex and the dimer were in reasonable agreement with experiment reported previously by Tachikawa et al. [Tachikawa et al., J. Phys. Chem. B 109 (2005) 3139]. It was found that the contribution from the 1:1 complex to the EPR spectra was very small. From the comparison with theoretical and experimental UV and EPR spectra, it was found that several paramagnetic and diamagnetic species exist in the co-deposit film of Al/NTCDA. The structures and electronic states were discussed on the basis of theoretical results.  相似文献   

2.
Al-uracil (Al-C4H4N2O2) was synthesized in a laser-vaporization supersonic molecular beam source and studied with pulsed field ionization-zero electron kinetic energy (ZEKE) photoelectron spectroscopy and density functional theory (DFT). The DFT calculations predicted several low-energy Al-uracil isomers with Al binding to the diketo, keto-enol, and dienol tautomers of uracil. The ZEKE spectroscopic measurements of Al-uracil determined the ionization energy of 43 064(5) cm-1 [or 5.340(6) eV] and a vibrational mode of 51 cm-1 for the neutral complex and several vibrational modes of 51, 303, 614, and 739 cm-1 for the ionized species. Combination of the ZEEK spectrum with the DFT and Franck-Condon factor calculations determined the preferred isomeric structure and electronic states of the Al-uracil complex. This isomer is formed by Al binding to the O4 atom of the diketo tautomer of uracil and has a planar Cs symmetry. The ground electronic states of the neutral and ionized species are 2A' ' and 1A', respectively. The 2A' ' neutral state has a slightly shorter Al-O4 distance than the 1A' ion state. However, the 1A' ion state has stronger metal-ligand binding compared to the 2A' ' state. The increased Al-O4 distance from the 2A' ' state to the 1A' state is attributed to the loss of the pi binding interaction between Al and O4 in the singlet ion state, whereas the increased metal-ligand binding strength is due to the additional charge-dipole interaction in the ion that surpasses the loss of the pi orbital interaction.  相似文献   

3.
The geometric and electronic structures of two mononuclear CuO2 complexes, [Cu(O2){HB(3-Ad-5-(i)Prpz)3}] (1) and [Cu(O2)(beta-diketiminate)] (2), have been evaluated using Cu K- and L-edge X-ray absorption spectroscopy (XAS) studies in combination with valence bond configuration interaction (VBCI) simulations and spin-unrestricted broken symmetry density functional theory (DFT) calculations. Cu K- and L-edge XAS data indicate the Cu(II) and Cu(III) nature of 1 and 2, respectively. The total integrated intensity under the L-edges shows that the 's in 1 and 2 contain 20% and 28% Cu character, respectively, indicative of very covalent ground states in both complexes, although more so in 1. Two-state VBCI simulations also indicate that the ground state in 2 has more Cu (/3d8) character. DFT calculations show that the in both complexes is dominated by O2(n-) character, although the O2(n-) character is higher in 1. It is shown that the ligand L plays an important role in modulating Cu-O2 bonding in these LCuO2 systems and tunes the ground states of 1 and 2 to have dominant Cu(II)-superoxide-like and Cu(III)-peroxide-like character, respectively. The contributions of ligand field (LF) and the charge on the absorbing atom in the molecule (Q(mol)M) to L- and K-edge energy shifts are evaluated using DFT and time-dependent DFT calculations. It is found that LF makes a dominant contribution to the edge energy shift, while the effect of Q(mol)M is minor. The charge on the Cu in the Cu(III) complex is found to be similar to that in Cu(II) complexes, which indicates a much stronger interaction with the ligand, leading to extensive charge transfer.  相似文献   

4.
采用密度泛函理论(DFT)的B3LYP方法,在6-311G**水平上对AlnO2±(n=1-10)团簇的几何和电子结构进行了理论计算.讨论了混合团簇的基态结构与振动频率,以及电荷转移与分子轨道.结果表明,AlnO2±(n>1)团簇的基态结构都是2个较小的AlmO(m相似文献   

5.
6.
The geometry and electronic structure of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) and its higher oxidation state species up formally to Ru(VI) have been studied by means of UV-vis, EPR, XAS, and DFT and CASSCF/CASPT2 calculations. DFT calculations of the molecular structures of these species show that, as the oxidation state increases, the Ru-O bond distance decreases, indicating increased degrees of Ru-O multiple bonding. In addition, the O-Ru-O valence bond angle increases as the oxidation state increases. EPR spectroscopy and quantum chemical calculations indicate that low-spin configurations are favored for all oxidation states. Thus, cis-[Ru(IV)(bpy)(2)(OH)(2)](2+) (d(4)) has a singlet ground state and is EPR-silent at low temperatures, while cis-[Ru(V)(bpy)(2)(O)(OH)](2+) (d(3)) has a doublet ground state. XAS spectroscopy of higher oxidation state species and DFT calculations further illuminate the electronic structures of these complexes, particularly with respect to the covalent character of the O-Ru-O fragment. In addition, the photochemical isomerization of cis-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) to its trans-[Ru(II)(bpy)(2)(H(2)O)(2)](2+) isomer has been fully characterized through quantum chemical calculations. The excited-state process is predicted to involve decoordination of one aqua ligand, which leads to a coordinatively unsaturated complex that undergoes structural rearrangement followed by recoordination of water to yield the trans isomer.  相似文献   

7.
The empty-level structure of the 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) molecule is characterized by means of dissociative electron attachment (DEA) experiments in the gas phase coupled with DFT calculations. Distinct maxima in the anion currents generated by electron attachment to NTCDA, as a function of incident electron energy, are ascribed to capture of incident electrons into empty orbitals, i.e., the process referred to as shape resonance. The empty orbital energies of gas-phase NTCDA shifted to 1.2 eV lower energy reproduce satisfactorily the maxima of the unoccupied electronic states of a multilayer NTCDA film measured by means of the very low energy electron diffraction method and the total current spectroscopy measurement scheme. The present results indicate that the empty levels of individual NTCDA molecules are stabilized in the solid state, but their relative energies remain nearly unaltered. The stabilization energy in multilayer film of NTCDA molecules is likely due to attractive polarization forces. Fragmentation of the gas-phase NTCDA temporary parent anions via the DEA mechanism, the other issue of the present investigation, leads to the rupture of the bonds between the end carbonyl groups and the naphthalene core, and occurs at incident electron energies above 2 eV. Possible chemical changes in condensed NTCDA molecules initiated by the DEA mechanism under conditions of electron transport through the film are discussed.  相似文献   

8.
The formation and structure of a novel species, a disuperoxo-cobalt dioxide complex (CoO(6)), has been investigated using matrix isolation in solid neon and argon, coupled to infrared spectroscopy and by quantum chemical methods. It is found that CoO(6) can be formed by successive complexation of cobalt dioxide by molecular oxygen without activation energy by diffusion of ground state O(2) molecules at 9K in the dark. The IR data on one combination and seven fundamentals, isotopic effects, and quantum chemical calculations are both consistent with an asymmetrical structure with two slightly nonequivalent oxygen ligands complexing a cobalt dioxide subunit. Evidence for other, metastable states is also presented, but the data are not complete. The electronic structure and formation pathway of this unique, formally +VI oxidation state, complex has been investigated using several functionals of current DFT within the broken-symmetry unrestricted formalism. It has been shown that the M06L pure local functional well reproduce the experimental observations. The ground electronic state is predicted to be an open shell (2)A' doublet with the quartet states above by more than 9 kcal/mol and the sextet lying even higher in energy. The ground state has a strong and complex multireference character that hinders the use of more precise multireference approaches and requires caution in the methodology to be used. The geometrical, energetic, and vibrational properties have been computed.  相似文献   

9.
10.
《Chemical physics letters》2001,331(3-4):339-344
The bis-verdazyl diradical (BVD) system is closely examined by using the multiconfiguration wavefunctions as well as the density functional theory (DFT). The totally symmetric singlet ground state turns out to have strong multiconfiguration character at all levels of theory. The singlet ground state takes on the planar structure while the most stable triplet state corresponds to the twisted form. The MCSCF+MCQDPT2 calculations are shown to be sufficient to predict the singlet–triplet energy gap which is insensitive to the electronic characters of the ring substituents.  相似文献   

11.
12.
用杂化密度泛函B3LYP方法在6-311+G(d)基组水平上研究了Fe 原子与N2分子相互作用的单端位构型的直线形和弯曲形两种结构的平衡几何结构、电子结构、轨道布局及红外光谱等性质. 计算结果表明, 由于强的σ-σ电子对互斥作用, 基组态4s23d6的Fe原子不能与N2分子发生化学作用; 当Fe 原子呈现可与N2之间发生σ-π授予反馈作用的激发组态时, Fe 与N2分子之间可形成稳定的结构; 在得到的多个电子态中, 能量最低的是直线形的13-, 比Fe(a5D)和N2(1+g )能量高21.6 kJ·mol-1, 同时存在几个能量相近的电子态, 如13∏、13Φ; 弯曲形都是不稳定态, 可能是连接直线形和单侧双配位构型的过渡态; 单端位构型产物相对于基态的反应物均是热力学不稳定的; 单端位构型中Fe对N2的活化作用很小, N—N 键长增加不超过7 pm.  相似文献   

13.
The infrared and Raman spectra of liquid and vapor gamma-crotonolactone have been collected. Both the experimental data and ab initio calculations show that the molecule is rigidly planar in its electronic ground state. This conclusion agrees with the previously reported microwave studies and is attributed to the conjugation between the C=C and C=O double bonds of the ring. The ring-puckering potential energy function was generated from ab initio calculations and was confirmed by the vapor-phase Raman spectra to be nearly harmonic. Density functional theory (DFT) calculations predict a harmonic ring-puckering frequency of 203 cm(-1) as compared to the observed vapor-phase Raman value of 208 cm(-1). The DFT calculations were also used to compute the infrared and Raman spectra of gamma-crotonolactone, and these agree very well with the experimental spectra.  相似文献   

14.
Anion photoelectron spectroscopy and quantum chemical calculations at the density functional theory (DFT), coupled cluster theory (CCSD(T)), and complete active space self-consistent field (CASSCF) theory levels are employed to study the reduced transition metal oxide clusters M(4)O(10)(-) (M = Cr, W) and their neutrals. Photoelectron spectra are obtained at 193 and 157 nm photon energies, revealing very different electronic structures for the Cr versus W oxide clusters. The electron affinity and HOMO-LUMO gap are measured to be 3.68 ± 0.05 and 0.7 eV, respectively, for the Cr(4)O(10) neutral cluster, as compared to 4.41 ± 0.04 and 1.3 eV for W(4)O(10). A comprehensive search is performed to determine the ground-state structures for M(4)O(10) and M(4)O(10)(-), in terms of geometry and electronic states by carefully examining the calculated relative energies at the DFT, CCSD(T), and CASSCF levels. The ground states of Cr(4)O(10) and Cr(4)O(10)(-) have tetrahedral structures similar to that of P(4)O(10) with the anion having a lower symmetry due to a Jahn-Teller distortion. The ground states of W(4)O(10) and W(4)O(10)(-) have butterfly shape structures, featuring two fused five-member rings with a metal-metal multiple bond between the central metal atoms. The much stronger WW bonding than the CrCr bonding is found to be the primary cause for the different ground state structures of the reduced Cr(4)O(10)(0/-) versus W(4)O(10)(0/-) oxide clusters. The photoelectron spectra are assigned by comparing the experimental and theoretical adiabatic and vertical electron detachment energies, further confirming the determination of the ground electronic states of M(4)O(10) and M(4)O(10)(-). The time-dependent DFT method is used to calculate the excitation energies of M(4)O(10). The TD-DFT results in combination with the self-consistently calculated vertical detachment energies for some of the excited states at the DFT and CCSD(T) levels are used to assign the higher energy bands. Accurate clustering energies and heats of formation of M(4)O(10) are calculated and used to calculate accurate reaction energies for the reduction of M(4)O(12) to M(4)O(10) by CH(3)OH, as well as for the oxidation of M(4)O(10) to M(4)O(12) by O(2). The performance of the DFT method with the B3LYP and BP86 functionals in the calculations of the relative energies, electron detachment energies, and excitation energies are evaluated, and the BP86 functional is found to give superior results for most of these energetic properties.  相似文献   

15.
This paper investigates the interaction between five-coordinate ferric hemes with bound axial imidazole ligands and nitric oxide (NO). The corresponding model complex, [Fe(TPP)(MI)(NO)](BF4) (MI = 1-methylimidazole), is studied using vibrational spectroscopy coupled to normal coordinate analysis and density functional theory (DFT) calculations. In particular, nuclear resonance vibrational spectroscopy is used to identify the Fe-N(O) stretching vibration. The results reveal the usual Fe(II)-NO(+) ground state for this complex, which is characterized by strong Fe-NO and N-O bonds, with Fe-NO and N-O force constants of 3.92 and 15.18 mdyn/A, respectively. This is related to two strong pi back-bonds between Fe(II) and NO(+). The alternative ground state, low-spin Fe(III)-NO(radical) (S = 0), is then investigated. DFT calculations show that this state exists as a stable minimum at a surprisingly low energy of only approximately 1-3 kcal/mol above the Fe(II)-NO(+) ground state. In addition, the Fe(II)-NO(+) potential energy surface (PES) crosses the low-spin Fe(III)-NO(radical) energy surface at a very small elongation (only 0.05-0.1 A) of the Fe-NO bond from the equilibrium distance. This implies that ferric heme nitrosyls with the latter ground state might exist, particularly with axial thiolate (cysteinate) coordination as observed in P450-type enzymes. Importantly, the low-spin Fe(III)-NO(radical) state has very different properties than the Fe(II)-NO(+) state. Specifically, the Fe-NO and N-O bonds are distinctively weaker, showing Fe-NO and N-O force constants of only 2.26 and 13.72 mdyn/A, respectively. The PES calculations further reveal that the thermodynamic weakness of the Fe-NO bond in ferric heme nitrosyls is an intrinsic feature that relates to the properties of the high-spin Fe(III)-NO(radical) (S = 2) state that appears at low energy and is dissociative with respect to the Fe-NO bond. Altogether, release of NO from a six-coordinate ferric heme nitrosyl requires the system to pass through at least three different electronic states, a process that is remarkably complex and also unprecedented for transition-metal nitrosyls. These findings have implications not only for heme nitrosyls but also for group-8 transition-metal(III) nitrosyls in general.  相似文献   

16.
1 INTRODUCTION Since the discovery of one-dimensional metallic behavior of tetrathiafulvalene (TTF) with tetracyano- quinodimethane (TCNQ)[1], organic charge-transfer (CT) complexes and CT salts have been intensively studied in search of electrically conducting and superconducting properties[2 ~ 6] which are most unusual for an organic material. The most intriguing property is that it is excellent metal with conducti- vity similar to that of metals at room temperature[7, 8]. In these…  相似文献   

17.
The reaction of Ni atoms with molecular oxygen has been reinvestigated experimentally in neon matrices and theoretically at the DFT PW91PW91/6311G(3df) level. Experimental results show that i) the nature of the ground electronic state of the superoxide metastable product is the same in neon and argon matrices, ii) two different photochemical pathways exist for the conversion of the superoxide to the dioxide ground state (involving 1.6 or 4 eV photons) and iii) an important matrix effect exists in the Ni + O(2)--> Ni(O(2)) or ONiO branching ratios. Theoretical results confirm that the electronic ground state of the metastable superoxide corresponds to the singlet state, in agreement with former CCSD(T) calculations, but in contradiction with other recent works. Our results show that the ground electronic state of the dioxide is (1)Sigma(+)(g) with the lowest triplet and quintet states at slightly higher energy, consistent with the observation of weak vibronic transitions in the near infrared. The potential energy profiles are modelled for the ground state and nine electronic excited states and a pathway for the Ni(triplet) + O(2)(triplet) --> Ni(O(2)) or ONiO (singlet) reaction is proposed, as well as for the Ni(O(2)) --> ONiO photochemical reaction, accounting for the experimental observations.  相似文献   

18.
The ground- and several excited states of metal aromatic clusters, namely NaM(4) and NaM(4) (+/-) (M=Al,Ga,In) clusters have been investigated by employing complete active-space self-consistent-field followed by multireference singles and doubles configuration interaction computations that included up to 10 million configurations and other methods. The ground states NaM(4) (-) of aromatic anions are found to be symmetric C(4nu) ((1)A(1)) electronic states with ideal square pyramid geometries. While the ground state of NaIn(4) is also predicted to be a symmetric C(4nu) ((2)A(1)) square pyramid, the ground state of the NaAl(4) cluster is found to have a C(2nu) ((2)A(1)) pyramid with a rhombus base, and the ground state of NaGa(4) possesses a C(2nu) ((2)A(1)) pyramid with a rectangle base. In general, these structures exhibit two competing geometries, viz., an ideal C(4nu) structure and a distorted rhomboidal or rectangular pyramid structure (C(2nu)). All of the ground states of the NaM(4) (+) (M=Al,Ga,In) cations are computed to be C(2nu) ((3)A(2)) pyramids with rhombus bases. The equilibrium geometries, vibrational frequencies, dissociation energies, adiabatic ionization potentials, adiabatic electron affinities for the electronic states of NaM(4) (M=Al,Ga,In), and their ions are computed and compared with experimental results and other theoretical calculations. On the basis of our computed excited states energy separations, we have tentatively suggested assignments to the observed X and A states in the anion photoelectron spectra of Al(4)Na(-) reported by Li et al. [X. Li, A. E. Kuznetov, H. F. Zheng, A. I. Boldyrev, and L. S. Wang, Science 291, 859 (2001)]. The X state can be assigned to a C(2nu) ((2)A(1)) rhomboidal pyramid. The A state observed in the anion spectrum is assigned to the first excited state ((2)B(1)) of the neutral NaAl(4) with the C(4nu) symmetry. The assignments of the excited states are consistent with the experimental excitation energies and the previous Green's function-based methods for the vertical transition energy separations between the X and A bands.  相似文献   

19.
Trigonal-planar, middle transition metal diiminato-imido complexes do not exhibit high-spin states, as might be naively expected on the basis of their low coordination numbers. Instead, the known Fe(III), Co(III), and Ni(III) complexes exhibit S = 3/2, S = 0, and S = 1/2 ground states, respectively. Kohn-Sham DFT calculations have provided a basic molecular orbital picture of these compounds as well as a qualitative rationale for the observed spin states. Reported herein are ab initio multiconfiguration second-order perturbation theory (CASPT2) calculations, which provide a relatively detailed picture of the d-d excited-state manifolds of these complexes. Thus, for a C(2v) Fe(III)(diiminato)(NPh) model complex, two near-degenerate states ((4)B(2) and (4)B(1)) compete as contenders for the ground state. Moreover, the high-spin sextet, two additional quartets and even a low-spin doublet all occur at <0.5 eV, relative to the ground state. For the Co(III) system, although CASPT2 reproduces an S = 0 ground state, as observed experimentally for a related complex, the calculations also predict two exceedingly low-energy triplet states; there are, however, no other particularly low-energy d-d excited states. In contrast to the Fe(III) and Co(III) cases, the Ni(III) complex has a clearly nondegenerate (2)B(2) ground state. The CASPT2 energetics provide benchmarks against which we can evaluate the performance of several common DFT methods. Although none of the functionals examined perform entirely satisfactorily, the B3LYP hybrid functional provides the best overall spin-state energetics.  相似文献   

20.
Multiconfigurational RASSCF/RASPT2 approach has been applied to investigate bonding of one and two nitric oxide (NO) molecules to a simple model of Cu(I) site in zeolite environment, Cu(I)[Al(OH)(4)]. Two binding modes were considered for the mononitrosyls and four alternative structures for the dinitrosyls (each one in either singlet or triplet state). Stabilities of the mono- and dinitrosyl complexes obtained from the multireference calculations were compared to the previously reported coupled cluster CCSD(T) results, as well as to DFT calculations performed here with various functionals, either hybrid or nonhybrid ones. RASSCF calculations provided also a qualitative insight into the electronic structure of the studied complexes, concerning mainly the interaction between the Cu and the NO ligand, and between the two NO fragments. Whereas the electronic structure of the mononitrosyls is dominated by a single configuration, the dinitrosyls have a considerably multireference character. Various effects of nondynamical correlation have been pointed out for these interesting species, trying to assess their impact on performance of the tested DFT methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号