首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Because multielement trace analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is often limited by the lack of suitable reference materials with a similar matrix composition, a novel quantification strategy using solution calibration was developed. For mass spectrometric multielement determination in geological samples a quadrupole-based LA-ICP-MS is coupled with an ultrasonic nebulizer (USN). In order to arrange matrix matching the standard solutions are nebulized with a USN during solution calibration and simultaneously a blank target (e.g. lithium borate) is ablated with a focused laser beam. The homogeneous geological samples were measured using the same experimental arrangement where a 2% nitric acid is simultaneously nebulized with the USN. Homogeneous targets were prepared from inhomogeneous geological samples by powdering, homogenizing and fusing with a lithium borate mixture in a muffle furnace at 1050 degrees C. Furthermore, a homogeneous geological glass was also investigated. The quantification of analytical results was performed by external calibration using calibration curves measured on standard solutions. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS, measured concentrations in homogeneous geological targets were also corrected with relative sensitivity coefficients (RSCs) determined using one standard solution only. The analytical results of LA-ICP-MS on various geological samples are in good agreement with the reference values and the results of other trace analytical methods. The relative standard deviation (RSD) for trace element determination (N = 6) is between 2 and 10%.  相似文献   

2.
Because multielement trace analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is often limited by the lack of suitable reference materials with a similar matrix composition, a novel quantification strategy using solution calibration was developed. For mass spectrometric multielement determination in geological samples a quadrupole-based LA-ICP-MS is coupled with an ultrasonic nebulizer (USN). In order to arrange matrix matching the standard solutions are nebulized with a USN during solution calibration and simultaneously a blank target (e.g. lithium borate) is ablated with a focused laser beam. The homogeneous geological samples were measured using the same experimental arrangement where a 2% nitric acid is simultaneously nebulized with the USN. Homogeneous targets were prepared from inhomogeneous geological samples by powdering, homogenizing and fusing with a lithium borate mixture in a muffle furnace at 1050?°C. Furthermore, a homogeneous geological glass was also investigated. The quantification of analytical results was performed by external calibration using calibration curves measured on standard solutions. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS, measured concentrations in homogeneous geological targets were also corrected with relative sensitivity coefficients (RSCs) determined using one standard solution only. The analytical results of LA-ICP-MS on various geological samples are in good agreement with the reference values and the results of other trace analytical methods. The relative standard deviation (RSD) for trace element determination (N = 6) is between 2 and 10%.  相似文献   

3.
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9–1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1–10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.  相似文献   

4.
The capability of LA-ICP-MS for determination of trace impurities in transparent quartz glasses was investigated. Due to low or completely lacking absorption of laser radiation, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) proves difficult on transparent solids, and in particular the quantification of measurement results is problematic in these circumstances. Quartz glass reference materials of various compositions were studied by using a Nd:YAG laser system with focused laser radiation of wavelengths of 1064 nm, 532 nm and 266 nm, and an ICP-QMS (Elan 6000, Perkin Elmer). The influence of ICP and laser ablation conditions in the analysis of quartz glasses of different compositions was investigated, with the laser power density in the region of interaction between laser radiation and solid surface determining the ablation process. The trace element concentration was determined via calibration curves recorded with the aid of quartz glass reference materials. Under optimized measuring conditions the correlation coefficients of the calibration curves are in the range of 0.9-1. The relative sensitivity factors of the trace elements determined in the quartz glass matrix are 0.1-10 for most of the trace elements studied by LA-ICP-MS. The detection limits of the trace elements in quartz glass are in the low ng/g to pg/g range.  相似文献   

5.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for the sensitive multi-element analysis of traces and ultra-traces in geological samples. In order to prepare homogeneous targets the powdered geological samples were melted together with a lithium-borate mixture (90% Li2B4O7, 10% LiBO2) in a muffle furnace at 1050?°C. The quantification of the analysis results was carried out using the BCR-2G and BM standard reference material (SRM). The experimentally determined relative sensitivity coefficients (RSC) for both SRMs vary between 0.2 and 3 for most of the elements, whereas the relative standard deviation (RSD) of the determination (N = 3) of the concentration was 5–20%. The analysis results of LA-ICP-MS for various geological samples are in agreement with those of other methods.  相似文献   

6.
Laser ablation inductively coupled plasma mass spectrometry using a quadrupole-based mass spectrometer (LA-ICP-QMS) was applied for the analysis of powdered zeolites (microporous aluminosilicates) used for clean-up procedures. For the quantitative determination of trace element concentrations three geological reference materials, granite NIM-G, lujavrite NIM-L and syenite NIM-S, from the National Institute for Metallurgy (South Africa) with a matrix composition corresponding to the zeolites were employed. Both the zeolites and reference materials were fused with a lithium borate mixture to increase the homogeneity and to eliminate mineralogical effects. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS relative sensitivity coefficients (RSCs) of chemical elements and calibration curves were measured using the geostandards. The experimentally obtained RSCs are in the range of 0.2-6 for all elements of interest. Calibration curves for trace elements were measured without and with Li or Ti as internal standard element. With a few exceptions the regression coefficients of the calibration curves are better than 0.993 with internal standardization. NIM-G granite reference material was employed to evaluate the accuracy of the technique. Therefore, the measured concentrations were corrected with RSCs which were determined using lujavrite reference material NIM-L. This quantification method provided analytical results with deviations of 1-11% from the recommended and proposed values in granite reference material NIM-G, except for Co, Cs, La and Tb. The relative standard deviation (RSD) of the determination of the trace element concentration (n = 5) is about 1% to 6% using Ti as internal standard element. Detection limits of LA-ICP-QMS in the lower microg/g range (from 0.03 microg/g for Lu, Ta and Th to 7.3 microg/g for Cu, with the exception of La) have been achieved for all elements of interest. Under the laser ablation conditions employed (lambda: 266 nm, repetition frequency: 10 Hz, pulse energy: 10 mJ, laser power density: 6 x 10(9) W/cm2) fractionation effects of the determined elements relative to the internal standard element Ti were not observed.  相似文献   

7.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for the sensitive multi-element analysis of traces and ultra-traces in geological samples. In order to prepare homogeneous targets the powdered geological samples were melted together with a lithium-borate mixture (90% Li2B4O7, 10% LiBO2) in a muffle furnace at 1050 °C. The quantification of the analysis results was carried out using the BCR-2G and BM standard reference material (SRM). The experimentally determined relative sensitivity coefficients (RSC) for both SRMs vary between 0.2 and 3 for most of the elements, whereas the relative standard deviation (RSD) of the determination (N = 3) of the concentration was 5–20%. The analysis results of LA-ICP-MS for various geological samples are in agreement with those of other methods. Received 31 March 1999 / Revised: 26 May 1999 / Accepted: 31 May 1999  相似文献   

8.
Laser ablation inductively coupled plasma mass spectrometry using a quadrupole-based mass spectrometer (LA-ICP-QMS) was applied for the analysis of powdered zeolites (microporous aluminosilicates) used for clean-up procedures. For the quantitative determination of trace element concentrations three geological reference materials, granite NIM-G, lujavrite NIM-L and syenite NIM-S, from the National Institute for Metallurgy (South Africa) with a matrix composition corresponding to the zeolites were employed. Both the zeolites and reference materials were fused with a lithium borate mixture to increase the homogeneity and to eliminate mineralogical effects. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS relative sensitivity coefficients (RSCs) of chemical elements and calibration curves were measured using the geostandards. The experimentally obtained RSCs are in the range of 0.2-6 for all elements of interest. Calibration curves for trace elements were measured without and with Li or Ti as internal standard element. With a few exceptions the regression coefficients of the calibration curves are better than 0.993 with internal standardization. NIM-G granite reference material was employed to evaluate the accuracy of the technique. Therefore, the measured concentrations were corrected with RSCs which were determined using lujavrite reference material NIM-L. This quantification method provided analytical results with deviations of 1–11% from the recommended and proposed values in granite reference material NIM-G, except for Co, Cs, La and Tb. The relative standard deviation (RSD) of the determination of the trace element concentration (n = 5) is about 1% to 6% using Ti as internal standard element. Detection limits of LA-ICP-QMS in the lower μg/g range (from 0.03 μg/g for Lu, Ta and Th to 7.3 μg/g for Cu, with the exception of La) have been achieved for all elements of interest. Under the laser ablation conditions employed (λ: 266 nm, repetition frequency: 10 Hz, pulse energy: 10 mJ, laser power density: 6 × 109 W/cm2) fractionation effects of the determined elements relative to the internal standard element Ti were not observed. Received: 7 April 2000 / Revised: 25 May 2000 / Accepted: 31 May 2000  相似文献   

9.
Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.  相似文献   

10.
For the determination of trace impurities in ceramic components of solid oxide fuel cells (SOFCs), some mass spectrometric methods have been applied such as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Due to a lack of suitable standard reference materials for quantifying of analytical results on La x Sr y MnO3 cathode material a matrix-matched synthetic standard-high purity initial compounds doped with trace elements-was prepared in order to determine the relative sensitivity coefficients in SSMS and LA-ICP-MS. Radiofrequency glow discharge mass spectrometry (rf-GDMS) was developed for trace analysis and depth profiling of thick non-conducting layers. Surface analytical techniques, such as secondary ion mass spectrometry (SIMS) and sputtered neutral mass spectrometry (SNMS), were used to determine the element distribution on surfaces (homogeneity) and the surface contaminants of SOFC ceramic layers.Dedicated to Professor Dr. rer. nat. Hubertus Nickel on the occasion of his 65th birthday  相似文献   

11.
The source of signal variations that governs the analytical performance of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was investigated in this study. In order to specify the source of signal variations of LA-ICP-MS, laser-induced plasma (LIP) Fe emission, LA-ICP-MS Fe+ and LA-ICP-MS Ni+ signals were used as internal standards for the determination of trace elements in low-alloy steel certified reference materials (BS 50D and JSS 1005-1008). Fe 1373.5 nm emission signals from LIP were measured, while trace element LA-ICP-MS signals were collected. After that, the LIP emission signals, LA-ICP-MS Fe+ and LA-ICP-MS Ni+ signals were used as internal standards, and the analytical performance was evaluated by the RSDs and the correlation coefficients (r) of the calibration curves. The improvement factors were dependent on the internal standardization methods. Analytical precisions (RSDs) of trace element LA-ICP-MS signals were improved by factors of 1.5-3.3 using LIP Fe emission signals as an internal standard. The improvement factors of 2.5 - 5.9 and 4.1 - 17 were obtained by using LA-ICP-MS Fe+ and LA-ICP-MS Ni+ signals as internal standards, respectively. Better correlation coefficients (r) were also obtained using the LA-ICP-MS signal compensation (0.9985 by LA-ICP-MS Fe+ and 0.9996 by LA-ICP-MS Ni+) rather than the LIP Fe emission compensation (0.9932). In this paper we compare and discuss the analytical performance achieved by LA-ICP-MS using LIP Fe emission, LA-ICP-MS Fe+ and LA-ICP-MS Ni+ signals as internal standards.  相似文献   

12.
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.  相似文献   

13.
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La(0.6)Sr(0.35)MnO(3) matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) - as a surface analytical method - has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO(2) layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.  相似文献   

14.
粉末压饼LA-ICP-MS测定土壤样品中微量元素   总被引:1,自引:0,他引:1  
研究了采用粉末压饼制样LA-ICP-MS测定土壤样品中多元素的分析方法.在土壤样品中事先加入已知含量的In,并以聚四氟乙烯(PTFE)为粘合剂,在200 KN的压力下制备用于激光剥蚀的压饼.详细讨论了粉末压饼样品中元素的均一性及元素相对信号响应.所建立的方法用于土壤标准参考物质固体样品的直接分析,测定值与参考值具有较好的一致性.  相似文献   

15.
For the trace analysis of impurities in thick ceramic layers of a solid oxide fuel cell (SOFC) sensitive solid-state mass spectrometric methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and radiofrequency glow discharge mass spectrometry (rf-GDMS) have been developed and used. In order to quantify the analytical results of LA-ICP-MS, the relative sensitivity coefficients of elements in a La0.6Sr0.35MnO3 matrix have been determined using synthetic standards. Secondary ion mass spectrometry (SIMS) – as a surface analytical method – has been used to characterize the element distribution and diffusion profiles of matrix elements on the interface of a perovskite/Y-stabilized ZrO2 layer. The application of different mass spectrometric methods for process control in the preparation of ceramic layers for the SOFC is described.  相似文献   

16.
建立了以Ti为内标,富钴结壳标准物质GSMC-1为外标,193nmArF准分子激光剥蚀ICP-MS方法研究富钴结壳不同结壳层中元素组成及分布。所建立的定量方法用于GSMC-2和GSMC-3的测定,分析结果的相对标准偏差和相对误差均小于10%;各分析元素的检出限为3.2~191ng/g(除Si外),可以满足富钴结壳原位微区分析的要求。对取自西太平洋麦哲伦海山区富钴结壳样品MDD-42,从核心到最外结壳层以0.5mm的微间距剥蚀并采集140个样品点,不同生长环带的微区分析结果表明,成矿元素和伴生元素在不同结壳层中呈现不同的分布特性,直接反映了结壳形成时期的地质作用和古海洋沉积环境。  相似文献   

17.
In this study we have validated a newly developed multi-element isotope dilution (ID) ICPMS method for the simultaneous analysis of up to 12 trace elements in geological samples. By evaluating the analytical uncertainty of individual components using certified reference materials we have quantified the overall analytical uncertainty of the multi-element ID ICPMS method at 1–2%. Individual components include sampling/weighing, purity of reagents, purity of spike solutions, calibration of spikes, determination of isotopic ratios, instrumental sources of error, correction of mass discrimination effect, values of constants, and operator bias. We have used the ID-determined trace elements for internal standardization to improve indirectly the analysis of 14 other (mainly mono-isotopic trace elements) by external calibration. The overall analytical uncertainty for those data is about 2–3%.In addition, we have analyzed USGS and MPI-DING geological reference materials (BHVO-1, BHVO-2, KL2-G, ML3B-G) to quantify the overall bias of the measurement procedure. Trace element analysis of geological reference materials yielded results that agree mostly within about 2–3% relative to the reference values. Since these results match the conclusions obtained by the investigation of the overall analytical uncertainty, we take this as a measure for the validity of multi-element ID ICPMS.  相似文献   

18.
采用电感耦合等离子体质谱(ICP-MS)与等离子体光谱(ICP-OES)联机同时测定多金属结核样品中常量、微量、痕量元素。样品经高压密封溶样弹消解后,一次气动雾化进样,ICP-OES测定常量和微量元素,ICP-MS测定微量和痕量元素。详细探讨了不同浓度范围元素的测定方式、元素分析信号的采集模式、多原子离子干扰的校正因子。采用ICP-MS与ICP-OES二种方式同时测定Co、Cu、Ni、Zn、V、Ba、Sr,分析结果表明具有较好的一致性。所建立的ICP-MS与ICP-OES联机检测技术用于多金属结核标准样品的分析(Nod-A-1,GSPN-1,GSPN-2,GSPN-3),分析结果与推荐值符合,相对标准偏差小于10%。  相似文献   

19.
This paper describes the automated in situ trace element analysis of solid materials by laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS). A compact computer-controlled solid state Nd:YAG Merchantek EO UV laser ablation (LA) system has been coupled with the high sensitivity VG PQII S ICP-MS. A two-directional communication was interfaced in-house between the ICP-MS and the LA via serial RS-232 port. Each LA-ICP-MS analysis at a defined point includes a 60 s pre-ablation delay, a 60 s ablation, and a 90 s flush delay. The execution of each defined time setting by LA was corresponding to the ICP-MS data acquisition allowing samples to be run in automated cycle sequences like solution auto-sampler ICP-MS analysis. Each analytical cycle consists of four standards, one control reference material, and 15 samples, and requires about 70 min. Data produced by Time Resolved Analysis (TRA) from ICP-MS were later reduced off-line by in-house written software. Twenty-two trace elements from four reference materials (NIST SRM 613, and fused glass chips of BCR-2, SY-4, and G-2) were determined by the automated LA-ICP-MS method. NIST SRM 610 or NIST SRM 613 was used as an external calibration standard, and Ca as an internal standard to correct for drift, differences in transport efficiency and sampling yield. Except for Zr and Hf in G-2, relative standard deviations for all other elements are less than 10%. Results compare well with the data reported from literature with average limits of detection from 1 ng x g(-1) to 455 ng x g(-1) and less than 100 ng x g(-1) for most trace elements.  相似文献   

20.
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g−1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号