首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CeF3 nanocrystals with plate-like and perforated morphologies were successfully synthesized via a facile hydrothermal route. The nanocrystals of CeF3@silica can dispersed in aqueous solution were also prepared. The effects of fluoride sources on the morphology and microstructure of the nanocrystals were investigated by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and powder X-ray diffraction (XRD). Results indicate that the morphology of the rare earth compound nanocrystals can be well tuned by selecting proper fluoride sources. The ultraviolet (UV) absorption peak of the CeF3 nanocrystals is slightly blue shifted along with the decrease of size. And the photoluminescence (PL) intensity of the CeF3 nanocrystals is closely related to size and microstructure as well.  相似文献   

2.
Magnetic and electron paramagnetic resonance (EPR) properties of EuFe3(BO3)4 single crystals have been studied over the temperature range of 300–4.2 K and in a magnetic field up to 5 T. The temperature, field and orientation dependences of susceptibility, magnetization and EPR spectra are presented. An antiferromagnetic ordering of the Fe subsystem occurs at about 37 K. The easy direction of magnetization perpendicular to the c axis is determined by magnetic measurements. Below 10 K, we observe an increase of susceptibility connected with the polarization of the Eu sublattice by an effective exchange field of the ordered Fe magnetic subsystem. In a magnetic field perpendicular to the c axis, we have observed an increase of magnetization at T < 10 K in the applied magnetic field, which can be attributed to the appearance of the magnetic moment induced by the magnetic field applied in the basal plane. According to EPR measurements, the distance between the maximum and minimum of derivative of absorption line of the Lorentz type is equal to 319 Gs. The anisotropy of g-factor and linewidth is due to the influence of crystalline field of trigonal symmetry. The peculiarities of temperature dependence of both intensity and linewidth are caused by the influence of excited states of europium ion (Eu3+). It is supposed that the difference between the g-factors from EPR and the magnetic measurements is caused by exchange interaction between rare earth and Fe subsystems via anomalous Zeeman effect.  相似文献   

3.
CoO and Li2O mixed with borotellurite glasses in the compositions, (B2O3)0.2-(TeO2)0.3-(CoO) x -(Li2O)0.5?x, where x = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 0.50 were synthesized by fast cooling the melt to room temperature. Absence of crystalline phases in the samples was confirmed by X-ray diffraction studies. Changes in dielectric properties with frequency and temperature over wide ranges have been measured. Dielectric constant and loss increased with increase in CoO content. AC conductivity has been analyzed using Mott’s small polaron model and activation energy was determined. Activation energy decreased and conductivity increased with increase in CoO content up to 0.3 mole fractions, and they behaved oppositely for higher concentration of CoO. This observed change of trend in activation energy and conductivity at 0.3 mole fraction of CoO ascribed to switch over of conduction mechanism occurring from predominantly ionic to electronic regime. For the first time, a transition of conduction mechanism is observed in borotellurite glasses. Temperature and composition independent relaxation mechanism in these glasses has been confirmed by plotting the scaled conductivity master curves. Hunt’s model has been invoked to understand the frequency dispersion of conductivity.
Graphical abstract Plots of ln(ε′′) versus ln(F) for BTCL2 glass at different temperatures
  相似文献   

4.
The electronic structure of cerium systems, the hybridization of 4 f and outer-shell electrons, and the influence of the position of the localized 4 f level with respect to the Fermi level E F in the conduction band have been investigated. The CeCu6, CePd3, CeSi2, and CeF3 systems have been studied using X-ray photoelectron spectroscopy. The densities of states have been calculated by the tight-binding linearized muffin-tin orbital method within the atomic sphere approximation, which takes into account the covalent character of bonds and the nonspherical distribution of the electron density. The results obtained from the calculations of the total density of states are in good agreement with the valence band X-ray photoelectron data for the systems under investigation. It has been shown that the differences in the properties of the cerium systems are determined by the specific features of their electronic structure. A strong interatomic interaction is characteristic of heavy-fermion systems.  相似文献   

5.
The thermal conductivity of Na2W2O7 single crystal has been studied along the main crystallographic directions at temperatures of 50–573 K. A low thermal conductivity is found to correlate with a significant difference in the cation weight.  相似文献   

6.
The specific features of a phase transition from a disordered orbital state to an ordered orbital state in an La0.875Sr0.125MnO3 single crystal are investigated using acoustic methods at a frequency f = 500 MHz. The phase transition is accompanied by a distortion of MnO6 octahedra due to the cooperative Jahn-Teller effect and is a first-order phase transition, as judged from the sharp change observed in the damping of acoustic pulses, the acoustic wave velocity, and the temperature hysteresis. It is revealed that the parameters of the acoustic waves change significantly throughout the temperature range of existence of the cooperatively distorted structure. In an external magnetic field, the structural phase transition is shifted toward lower temperatures.  相似文献   

7.
8.
The aspects of structure, dipole ordering, and ionic conductivity of the Na3Cr2(PO4)3 crystal with the four polymorphic phases (α, α', β, and γ) have been investigated. The features of the α-Na3Cr2(PO4)3 crystal structure and its dipole ordering and relaxation polarization in the low-temperature α and α' phases have been refined. The occurrence of Na3Cr2(PO4)3 dipole ordering in the α and α' phases and high ionic conductivity in the β and γ phases is attributed to the structural changes in the rhombohedral [Me2(PO4)3]–33∞ crystal frame upon phase transformations α → α', α' → β, and β → γ. A model for explaining the dipole ordering and ionic conductivity phenomena in Na3Cr2(PO4)3 is proposed.  相似文献   

9.
The nonlinear microwave absorption in the (CH3NH3)2CuBr4 antiferromagnetic crystal is investigated experimentally. The temperature and angular dependences of the parameters of nonlinear resonance and the dependences of these parameters on the microwave pump power are analyzed. It is found that the nonlinear properties deteriorate with decreasing temperature and the linear and nonlinear contributions are competitive in character.  相似文献   

10.
The structural geometry change in the perovskite-type N(CH3)4CdBr3 single crystal near the phase transition temperature of T C = 390 K was investigated using magic angle spinning nuclear magnetic resonance techniques. For 1H and 13C nuclei, the temperature dependences of their chemical shift, spectral intensity, and spin–lattice relaxation time (T ) in the rotating frame were obtained and analyzed. While the chemical shift and T of 1H showed change near T C, those of 13C did not. In addition, the 113Cd spin–lattice relaxation time T 1 in the laboratory frame near T C show no evidence of anomalous change near the phase transition temperature, which coincides with the measured changes in the 1H T . The driving force for this phase transition was connected to the 1H in the CH3 groups.  相似文献   

11.
Polarization-optical study of twinning and measurements of the Raman spectra and birefringence in oxyfluoride (NH4)3Ti(O2)F5 were carried out over the temperature range 90–350 K. Phase transitions were detected at temperatures T 01 = 266 K (second-order transition) and T 02 = 225 K (first order). It is assumed that the crystal symmetry is changed as follows: Fm3m ? I4/mmm ? I4/m. Anomalies of the spectral parameters are established in the frequency range of internal vibrations of ammonium ions and Ti(O2)F5 complexes. An analysis of the results shows that the transition at T 01 is likely due to small shifts of the tetrahedral groups from their position on the triad axis and that the transition at T 02 is due to fluorine-oxygen ordering of Ti(O2)F5 complexes.  相似文献   

12.
The non-linear optical (NLO) crystal LaCa4 O(BO3)3 (LaCOB ) has been grown by the Czochralski method. X-ray diffraction experiments show that LaCOB crystal possesses the space group Cm, and its unit cell constants have been measured to be a=0.8168(3) nm,b=1.6081(7) nm and c=0.3630(6) nm, with an angle =101.39°. The thermal properties of LaCOB have been studied; the specific heat of the crystal is 321.9 J/molK at 330 K, and the three principal coefficients of thermal expansion of the principal axes have been calculated from the measured data to be 5.61×10-6 K-1, 7.21×10-6 K-1 and 11.01×10-6 K-1, respectively. The transmission spectrum shows that LaCOB crystal has a wide transparency wavelength range, and may be used as a NLO crystal. PACS 81.10.Fq; 65.40.Ba; 65.40.De  相似文献   

13.
The thermal conductivity and the heat capacity of a single crystal of bismuth orthogermanate Bi4Ge3O12 have been experimentally investigated in the temperature ranges 50–300 and 56–300 K, respectively. The temperature dependences of the phonon mean free path, the characteristic Debye temperature, and the changes in the entropy and enthalpy have been calculated.  相似文献   

14.
The magnitude and character of conductivity were studied for Y2(WO4)3 ceramics synthesized by the ceramic (from oxides) and organic-nitrate procedures. Investigation of the dependence \(\sigma \left( {{\alpha _{{o_2}}}} \right)\) and measurements of the ion transport numbers of charge carriers by the EMF method showed that Y2(WO4)3 is basically an ion conductor. The conductivity is largely determined by the sample preparation conditions related to the dependence of the specific surface area and powder grain size on the synthetic procedure. The maximum high-temperature conductivity of Y2(WO4)3 was 2.51 × 10–4 S/cm, which roughly corresponds to the conductivities of Sc2(WO4)3 and In2(WO4)3 measured under the same conditions. It was confirmed that Y2(WO4)3 crystallizes as a mixed monoclinic-orthorhombic structure at 1000°C. The character of water incorporation in hydrated Y2(WO4)3 crystals was studied by thermogravimetry and diffuse reflectance IR spectroscopy. A qualitative model of water intercalation was suggested.  相似文献   

15.
Crystals of Ca3NbGa3Si2O14 (CNGS) with ordered langasite structure were grown using the Czochralski method along the Cartesian X axis [110]. The as-grown crystals exhibit high optical quality and structure perfection. Optical activities were obtained by measuring polarised transmission at various wavelengths between crossed polarisers using a TU-1900 spectrophotometer and we found that CNGS crystals showed very large values of . PACS 81.10.-h; 42.79.Ci; 78.20.Ek  相似文献   

16.
The dependence of the NMR frequencies on the external magnetic field in a Mn3Al2Ge3O12 non-collinear 12-sublattice antiferromgnet is calculated using the exchange approximation for the spin dynamics.  相似文献   

17.
The magnetic properties of (CH3NH3)2CuBr4 quasi-two-dimensional crystals were studied experimentally. The magnetic-field and temperature dependences of magnetization were measured for various magnetic field orientations relative to the crystallographic axes. Possible reasons for features in the behavior of the magnetization are discussed.  相似文献   

18.
The complex impedance of the Ag2ZnP2O7 compound has been investigated in the temperature range 419–557 K and in the frequency range 200 Hz–5 MHz. The Z′ and Z′ versus frequency plots are well fitted to an equivalent circuit model. Dielectric data were analyzed using complex electrical modulus M* for the sample at various temperatures. The modulus plot can be characterized by full width at half-height or in terms of a non-exponential decay function f( \textt ) = exp( - \textt/t )b \phi \left( {\text{t}} \right) = \exp {\left( { - {\text{t}}/\tau } \right)^\beta } . The frequency dependence of the conductivity is interpreted in terms of Jonscher’s law: s( w) = s\textdc + \textAwn \sigma \left( \omega \right) = {\sigma_{\text{dc}}} + {\text{A}}{\omega^n} . The conductivity σ dc follows the Arrhenius relation. The near value of activation energies obtained from the analysis of M″, conductivity data, and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of the Ag+ ions in the structure of the investigated material.  相似文献   

19.
The NMR spectra of 63Cu and 65Cu natural copper isotopes in a LiCu2O2 multiferroic single crystal compound have been measured above and below the temperature of magnetic phase transition (T c = 23 K) in zero magnetic field and in applied magnetic field H 0 = 94 kOe parallel to the c axis of the crystal. In LiCu2O2 below T c, a complicated helical magnetic structure with the magnetic moment of copper ions Cu2+ varying along the chain according to the harmonic law with the wave vector being incommensurate to the crystal lattice constants has been revealed. The experimental results have been successfully interpreted using the model based on the planar helical magnetic structure. It has been found that the plane of rotation for Cu2+ magnetic moments in LiCu2O2 does not coincide at H 0 = 0 with the ab plane. The high magnetic field (H 0 = 94 kOe) applied along the c axis of the single crystal does not affect the spatial orientation of the plane of rotation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号