首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Physics letters. A》2002,300(1):76-81
By using the corrected solutions for an ultrashort laser pulse, we study the laser-driven electron violent acceleration in vacuum. Our simulations demonstrate that an ultrashort laser pulse with an intensity a0eE0/meωc=3 can accelerate electrons to an energy more than 0.5 GeV. The scaling laws for the net energy gain in different pulse length and laser radius at focus are also studied. Its acceleration mechanism is found to be ponderomotive acceleration.  相似文献   

2.
A new method of cylindrical cumulation of fast ions undergoing ponderomotive acceleration at the focus of a high-power subpicosecond laser is proposed. When a laser beam is focused in a preionized gas at a ring focus, radial acceleration of ions by the ponderomotive force occurs. The ions accelerated from the inner side of the ring form a cylindrical shock wave converging toward the axis. As the shock wave cumulates, the ion density increases rapidly and the ion-ion collision probability increases along with it. A numerical simulation for a ~100 TW subpicosecond laser pulse predicts the generation of up to 200 keV ions and up to 100-fold volume compression of the plasma in a cylinder ~1 μm in diameter. The lifetime of the dense plasma filament over the length of the laser caustic is several picoseconds. It is suggested that laser cumulation of ions be used for the production of a bright and compact subpicosecond source of fast neutrons, media for x-and γ-ray lasers, and multiply-charged ions and for the initiation of nuclear reactions. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 1, 20–25 (10 January 1999)  相似文献   

3.
Ion acceleration by petawatt laser radiation in underdense and overdense plasmas is studied with 2D3V-PIC (Particle in Cell) numerical simulations. These simulations show that the laser pulse drills a channel through the plasma slab, and electrons and ions expand in vacuum. Fast electrons escape first from the electron-ion cloud. Later, ions gain a high energy on account of the Coulomb explosion of the cloud and the inductive electric field which appears due to fast change of the magnetic field generated by the laser pulse. Similarly, when a superintense laser pulse interacts with a thin slab of overdense plasma, its ponderomotive pressure blows all the electrons away from a finite-diameter spot on the slab. Then, due to the Coulomb explosion, ions gain an energy as high as 1 GeV. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 2, 80–86 (25 July 1999) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

4.
A new scheme is proposed for proton and light-ion acceleration to relativistic energies by superstrong laser radiation interacting with a structured plasma target. The proposal consists in the use of two-component targets consisting of heavy and light ions, where an ambipolar field is formed under the action of the ponderomotive force of incident radiation, and, in contrast to the traditional schemes, acceleration starts from the front boundary of the layer. It is shown that, for the optimized target parameters, monoenergetic GeV ion beams can be produced for radiation pulse intensities on the order of 1021−1022 W/cm2.  相似文献   

5.
A chirped laser pulse indicates that the laser frequency changes over the duration of the pulse: a positively (negatively) chirped pulse implies that the laser frequency increases (decreases) with time. In this paper, we use a simplified, fully relativistic hydrodynamic approach to simulate the influence of chirp on the propagation of a femtosecond relativistic laser pulse in underdense plasma. Based on this simplified cold‐fluid model, the influence of chirp on the main dynamics of the laser pulse, such as self‐steepening, red‐shift in the leading edge, variation of the frequency chirp, and the generated wakefields can be studied self‐consistently. The simulation results show that a pulse with a positive chirp results in a larger increment in the intensity parameter a0 when propagating a certain distance into an underdense plasma compared with an un‐chirped and a negatively chirped pulse, which is largely because of a much greater forward shift of the peak amplitude and more severe pulse self‐steepening effect due to the frequency red‐shift at the leading edge when exciting a plasma wave. The ponderomotive force, which relates to the first‐order differential of the laser pulse intensity envelope, is expected to be stronger for a positively chirped pulse because of its steeper leading edge and larger intensity parameter a0. As a result, the wakefield driven by the positively chirped laser pulse is more intense than that driven by an un‐chirped and a negatively chirped laser pulse, which is confirmed by our self‐consistent hydrodynamic simulation.  相似文献   

6.
三角激光脉冲尾波加速粒子模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
徐涵  常文蔚  银燕  卓红斌 《物理学报》2004,53(3):818-823
电子俘获是激光尾波场加速电子的主要机理,增大电子的初速度可以使更多的电子被尾波场俘获.提出三角脉冲激发尾波加速电子的方案,三角脉冲平缓上升沿激发受激Raman散射,用以初步加速电子,三角脉冲陡峭下降沿激发尾波场,将更多的电子加速到接近光速.2D3V粒子模拟结果证实了这一点.同时表明:脉冲长度为几个等离子体波长的超强激光在稀薄等离子体中传播时,还激发侧向Raman散射.在侧向受激Raman散射中,静电波增长最快的波矢模式为kp=(2ωp0 关键词: 有质动力 电子俘获 前向受激Raman散射 侧向受激Raman散射  相似文献   

7.
High-order correction terms to the expression of the field of ultra-short tightly focused Gaussian laser pulses are derived. Terms up to seventh order in the small dimensionless spatial parameter s=1/(k0w00) and first order in the small dimensionless temporal parameter ε=1/(ω0t0) are explicitly presented (ω0=ck0 the central oscillatory frequency, 2t0 the pulse duration, w00 the beam waist radius at the central frequency ω0). To evaluate the correction efficacy, both the corrected and the paraxial field equations are used in detailed simulation studies of laser/electron interaction dynamics. Special attention is given to the vacuum laser acceleration scheme. The influence on the electron dynamics due to the diffraction edge field of a tightly focused laser beam is also investigated. PACS  42.25.Bs; 42.60.Jf; 41.75.Jv  相似文献   

8.
A Gaussian whistler pulse is shown to cause ponderomotive acceleration of electrons in a plasma when the peak whistler amplitude exceeds a threshold value and the whistler frequency is greater than half the cyclotron frequency, ω>ω c /2. The threshold amplitude decreases with the ratio of plasma frequency to electron cyclotron frequency, ω p /ω c . However, above the threshold amplitude, the acceleration energy decreases with ω p /ω c . The electrons gain velocities about twice the group velocity of the whistler.  相似文献   

9.
高能电子与超强激光束作用产生的阿秒脉冲列   总被引:2,自引:1,他引:1       下载免费PDF全文
郑君  盛政明  张杰 《物理学报》2005,54(6):2638-2644
利用非线性汤姆孙散射的理论,从理论和数值模拟上研究了单电子在横向穿越高斯激光束束 腰时所辐射的x射线阿秒脉冲列的性质. 主要分析了电子以初始能量γ0=1M eV—100M eV横向穿越激光振幅参数为a0=1—10的高斯光束束腰获得的阿秒辐射脉冲的 时间 和空间性质. 计算表明,辐射呈现脉冲列的形式. 脉冲列的包络宽度取决于激光强度、束腰 的宽度以及入射电子能量. 电子的初始能量比激光强度对电子辐射脉冲的影响更大. 辐射脉 宽、脉冲间隔和脉冲包络宽度都正比于1/γ20,辐射功率正比于 γ60,辐射能 量正比于γ40. 当改变激光振幅a0时,辐射功率正比 于a20、辐射包络中单 个脉冲脉宽正比于1/a0、脉冲之间的间隔正比于a0. 当保持激光强 度不变,而改变光束 束腰半径w0时,辐射的脉冲数量、包络和辐射能量正比于w0. 当 激光功率保 持不变时而改变激光强度和束腰半径时,脉冲包络宽度和最大辐射能量都基本不变. 当激光 振幅参数a0=1,电子初始能量为10MeV时,激光束腰为两个激光波长时,电子 辐 射脉冲包络宽度只有14×10-3τ0(τ0为入 射激光周期),达到几个阿秒的量级. 关键词: 阿秒脉冲 非线性汤姆孙散射 高斯激光光束  相似文献   

10.
We study the generation of a quasistatic magnetic field by a short, circularly polarized laser pulse in a tenuous cold uniform plasma. It is shown that two physical mechanisms are responsible for the generation of the various components of the magnetic field. One mechanism is due to the ponderomotive forces and governs the generation of the azimuthal component of the magnetic field. The other is similar to the inverse Faraday effect (IFE) in a nonuniform plasma and gives rise to axial and radial components of the magnetic field. At moderate radiative intensities, all magnetic field components are proportional to the squared intensity. The spatial structure of the magnetic field depends strongly on the pulse shape and the plasma density. Zh. éksp. Teor. Fiz. 114, 849–863 (September 1998)  相似文献   

11.
This paper summarizes briefly the main experimental and numerical results of the IPPLM team studies on the generation of ultra-intense ion beams by a short (≤1?ps) laser pulse. Basic laser-driven ion acceleration schemes capable of generating such ion beams are described including the target normal sheath acceleration (TNSA) scheme, the skin-layer ponderomotive acceleration (SLPA) scheme and the laser-induced cavity pressure acceleration (LICPA) scheme. It is shown that an efficient way for achieving high ion beam intensities and fluencies lies in using a short-wavelength laser driver of circular light polarization. In such a case, SLPA clearly dominates over TNSA, and dense and compact ion bunch is generated with high energetic efficiency. The LICPA scheme operating in the photon (radiation) pressure regime can be even more efficient than SLPA. As it is demonstrated by particle-in-cell simulations, the LICPA accelerator with a picosecond, circularly polarized laser driver of intensity ~ 1021?W/cm2 can produce sub-picosecond light ion beams of intensity ~ 1022?W/cm2 and fluence?>?1?GJ/cm2 with the energetic efficiency of tens of percent. Laser-driven ion beams of such extreme parameters could open up new research areas in high-energy-density science, inertial fusion or nuclear physics.  相似文献   

12.
A novel approach for the generation of ultrabright attosecond electron bunches is proposed, based on acceleration in vacuum, by a short laser pulse. The laser-pulse profile is tailored such that the electrons are both focused and accelerated by the ponderomotive force of the light. Using time-averaged equations of motion, analytical criteria for optimal regime of acceleration are found. It is shown that for realistic laser parameters, a beam with up to 10(6) particles and normalized transverse and longitudinal emittances <10(-8) m can be produced.  相似文献   

13.
Using three-dimensional test particle simulations, we investigated electrons accelerated by a focused flat-top laser beam at different intensities and flatness levels of the beam profile before focusing in vacuum. The results show that the presence of sidelobes around the main focal spot of the focused flat-top laser beam influences the optimum (as far as electron acceleration is concerned) initial momentum (and incident angle) of electrons for acceleration. The difference of initial conditions between laser beams with and without sidelobes becomes evident when the laser field is strong enough (a0>10, corresponding to intensities I>1×1020 W/cm2 for the laser wavelength λ=1 μm, where a0 is a dimensionless parameter measuring laser intensity). The difference becomes more pronounced at increasing a0. Because of the presence of sidelobes, there exist three typical CAS (capture and acceleration scenario) channels when a0≥30 (corresponding to I>1×1021 W/cm2 for λ=1 μm). The energy spread of the outgoing electrons is also discussed in detail. PACS 41.75.Jv; 42.60.Jf; 42.25.Fx  相似文献   

14.
We present results where highly supersonic plasma jets and accelerated plasma fragments are generated by interaction of an intense picosecond laser pulse with a metallic target (Al, Cu, W, and Ta) in gas atmosphere. The formation of jets and well-localized massive plasma fragments occurs when a strong forward shock from a main laser pulse and a reverse shock from a pre-pulse meet to. Interferometric and shadow graphic measurements with high temporal (100 ps) and spatial (1 μm) resolution yield information about the formation and evolution of plasma jets and plasma fragments. The excitation of the electric and self-generated magnetic field by ponderomotive force during propagation of the laser pulse in a gas atmosphere was investigated as well. It had been shown previously that under certain conditions a hollow current channel can be generated in laser-produced plasma. The azimuthal magnetic field in such a micro-channel was determined by Faraday rotation of a probing laser beam to be 7.6 MGauss (MG). Ion acceleration in a pinched annular current channel up to 8 MeV analogous to micro-“plasma focus” conditions, may be realized at lengths of 100 μm. Self-generated magnetic fields of 4-7 MG have also been measured in thin skin layers in front of shock waves, where well-collimated plasma blocks were separated and accelerated away from the plasma body. The velocity of dense plasma blocks reaches values of order of 3 × 108 cm/s and they are stable during acceleration and propagation in gas.  相似文献   

15.
The x-ray spectra of a plasma generated by heating CO2 and Ar clusters with high-intensity femtosecond laser pulses with q las≃1018 W/cm2 are investigated. Spatially resolved x-ray spectra of a cluster plasma are obtained for the first time. Photoionization absorption is observed to influence the spectral line profiles. The recorded features of the x-ray emission spectra definitely indicate the existence of a large relative number of excited ions (≃10−2–10−3) with energies of 0.1–1 MeV in such a plasma. Possible mechanisms underlying the acceleration of ions to high energies are discussed. It is shown that the experimental results can be attributed to the influence of ponderomotive forces in standing waves generated by the reflection of laser radiation from the clusters. Zh. éksp. Teor. Fiz. 115, 2051–2066 (June 1999)  相似文献   

16.
陈民  盛政明  张杰 《中国物理》2006,15(3):568-574
We suggest a scheme of electron acceleration by use of two tightly focused ultra-short intense laser pulses at a 100TW level. Electrons obtain a preliminary acceleration with a small angular spread by the longitudinal ponderomotive force of the first pulse. They are then injected and further accelerated to hundreds of MeV by the second laser pulse.  相似文献   

17.
The problem of the motion of a classical relativistic electron in a focused high-intensity laser pulse is solved. A new three-dimensional model of the electromagnetic field, which is an exact solution of Maxwell’s equations, is proposed to describe a stationary laser beam. An extension of the model is proposed. This extension describes a laser pulse of finite duration and is an approximate solution of Maxwell’s equations. The equations for the average motion of an electron in the field of a laser pulse, described by our model, are derived assuming weak spatial and temporal nonuniformities of the field. It is shown that, to a first approximation in the parameters of the nonuniformities, the average (ponderomotive) force acting on a particle is described by the gradient of the ponderomotive potential, but it loses its potential character even in second order. It is found that the three-dimensional ponderomotive potential is asymmetric. The trajectories of relativistic electrons moving in a laser field are obtained and the cross sections for scattering of electrons by a stationary laser beam are calculated. It is shown that reflection of electrons from the laser pulse and the surfing effect are present in the model studied. It is found that for certain impact parameters of the incident electrons the asymmetic ponderomotive potential can manifest itself effectively as an attractive potential. It is also shown that even in the case of a symmetric potential the scattering cross section contains singularities, known as rainbow scattering. The results are applicable for fields characterized by large (compared to 1) values of the dimensionless parameter η2 = e 2E 2〉/m 2ω2 and arbitrary electron energies.  相似文献   

18.
The fifth harmonic pulses of an intense femtosecond Ti:sapphire laser were experimentally shown to be negatively chirped by using an LiF plate as a positive dispersive medium. The chirp of the harmonic pulse originates from the intensity-dependent atomic dipole phase, which is estimated to be proportional to 25 Up, where Up is the ponderomotive energy. Consequently, we have succeeded in compressing the chirped pulses to 13 fs by compensating the intrinsic negative chirp. Chirp effects of the fundamental laser on the pulse width of the fifth harmonic were consistent with the negative chirp of the fifth harmonic.  相似文献   

19.
A new scheme is proposed for proton and light-ion acceleration to relativistic energies by superstrong laser radiation interacting with a structured plasma target. The proposal consists in the use of two-component targets consisting of heavy and light ions, where an ambipolar field is formed under the action of the ponderomotive force of incident radiation, and, in contrast to the traditional schemes, acceleration starts from the front boundary of the layer. It is shown that, for the optimized target parameters, monoenergetic GeV ion beams can be produced for radiation pulse intensities on the order of 1021−1022 W/cm2. Original Russian Text ? A.V. Korzhimanov, A.A. Gonoskov, A.V. Kim, A.M. Sergeev, 2007, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 9, pp. 662–669.  相似文献   

20.
We theoretically investigate the possibility of electron acceleration during the self-channeled propagation of laser radiation. We consider a new acceleration mechanism associated with the formation of an ion cloud in material (under the ponderomotive force of the laser radiation) that moves together with the laser pulse. We show that the quasi-stationary electric and magnetic fields generated by the moving ion cloud can lead to the acceleration of electrons up to energies of several dozen MeV and to the formation of an electron beam propagating forward coaxially with the laser pulse. The calculated angular distribution of the accelerated electrons is in satisfactory agreement with published experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号