首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ba deposition on a theta-Al(2)O(3)/NiAl(100) substrate and its oxidation with gas-phase O(2) at various surface temperatures are investigated using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and temperature programmed desorption (TPD) techniques. Oxidation of metallic Ba by gas-phase O(2) at 800 K results in the growth of 2D and 3D BaO surface domains. Saturation of a metallic Ba layer deposited on theta-Al(2)O(3)/NiAl(100) with O(2)(g) at 300 K reveals the formation of BaO(2)-like surface states. These metastable peroxide (O(2)(2-)) states are converted to regular oxide (O(2-)) states at higher temperatures (800 K). In terms of thermal stability, BaO surface layers (theta(Ba) < 5 ML) that are formed by O(2)(g) assisted oxidation on the theta-Al(2)O(3)/NiAl(100) substrate are significantly more stable (with a desorption/decomposition temperature of c.a. 1050 K) than the thick (2 < theta(Ba) < 10 ML) metallic/partially oxidized Ba layers prepared in the absence of gas-phase O(2), whose multilayer desorption features appear as low as 700 K.  相似文献   

2.
The adsorption and desorption of HCl on Pt(111) is investigated by temperature programmed desorption, infrared reflection absorption spectroscopy, and low energy electron diffraction. Five peaks are identified in the desorption spectra prior to the onset of multilayer desorption. At low coverage ( < 0.25 monolayers (ML)), desorption peaks at approximately 135 and 200 K are observed and assigned to recombinative desorption of dissociated HCl. At higher coverages, desorption peaks at 70, 77, and 84 K are observed. These peaks are assigned to the desorption of molecularly adsorbed HCl. The infrared spectra are in agreement with these assignments and show that HCl deposited at 20 K is amorphous but crystallizes when heated above 60 K. Kinetic analysis of the desorption spectra reveals a strong repulsive coverage dependence for the desorption energy of the low coverage features ( < 0.25 ML). The diffraction data indicate that at low temperature the adsorbed HCl clusters into ordered islands with a (3 x 3) structure and a local coverage of 4/9 with respect to the Pt(111) substrate.  相似文献   

3.
Temperature programmed desorption (TPD), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM) have been used to characterize molybdenum carbide nanoparticles prepared on a Au(111) substrate. The MoC(x) nanoparticles were formed by Mo metal deposition onto a reactive multilayer of ethylene, which was physisorbed on a Au(111) substrate at low temperatures (<100 K). The resulting clusters have an average diameter of approximately 1.5 nm and aggregate in the fcc troughs located on either side of the elbows of the reconstructed Au(111) surface. Core level XPS shows that the electronic environment of the Mo and C atoms in the nanoparticles is similar to that found in Mo(2)C(0001) single crystals and carburized Mo metal surfaces. Peak intensities in XPS and AES spectra were used to estimate an average Mo/C atomic ratio of 1.2 +/- 0.3 for nanoparticles annealed above 600 K.  相似文献   

4.
The Ge/Si(100)2 × 1 interface was investigated by means of Auger electron spectroscopy, low‐energy electron diffraction, thermal desorption spectroscopy, and work function measurements, in the regime of a few monolayers. The results show that growth of Ge at room temperature forms a thermally stable amorphous interface without significant intermixing and interdiffusion into the substrate, for annealing up to ~1100 K. Therefore, the Ge‐Si interaction most likely takes place at the outmost silicon atomic plane. The charge transfer between Ge and Si seems to be negligible, indicating a rather covalent bonding. Regarding the Ge overlayer morphology, the growth mode depends on the substrate temperature during deposition, in accordance with the literature. Stronger annealing of the germanium covered substrate (>1100 K) causes desorption of not only Ge adatoms, but also SiGe and Ge2 species. This is probably due to a thermal Ge‐Si interdiffusion. In that case, deeper silicon planes participate in the Ge‐Si interaction. Above 1200 K, a new Ge superstructure (4 × 4)R45o was observed. Based on that symmetry, an atomic model is proposed, where Ge adatom pairs interact with free silicon dangling bonds.  相似文献   

5.
A smooth Ru(0001) surface prepared under ultra-high vacuum conditions has been loaded with oxygen under high-pressure (p approximately 1 bar) and low-temperature (T < 600 K) conditions. Oxygen phases created in this way have been investigated by means of thermal desorption spectroscopy, low-energy electron diffraction, and ultraviolet photoelectron spectroscopy. The exposure procedures applied lead to oxygen incorporation into the subsurface region without creation of RuO2 domains. For oxygen exposures ranging from 10(11) to 10(14) L oxygen contents up to about 4 monolayer equivalent could be achieved. The oxygen incorporation is thermally activated. The CO oxidation reaction conducted at mild temperatures (T < 500 K) at a sample loaded with subsurface oxygen reaches CO --> CO2 conversion probabilities of 10(-3).  相似文献   

6.
The adsorption and reaction of NO(2) on BaO (<1, ~3, and >20 monolayer equivalent (MLE))/Pt(111) model systems were studied with temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), and infrared reflection absorption spectroscopy (IRAS) under ultra-high vacuum (UHV) as well as elevated pressure conditions. NO(2) reacts with sub-monolayer BaO (<1 MLE) to form nitrites only, whereas the reaction of NO(2) with BaO (~3 MLE)/Pt(111) produces mainly nitrites and a small amount of nitrates under UHV conditions (P(NO(2))≈ 1.0 × 10(-9) Torr) at 300 K. In contrast, a thick BaO (>20 MLE) layer on Pt(111) reacts with NO(2) to form nitrite-nitrate ion pairs under the same conditions. At elevated NO(2) pressures (≥1.0 × 10(-5) Torr), however, BaO layers at all these three coverages convert to amorphous barium nitrates at 300 K. Upon annealing to 500 K, these amorphous barium nitrate layers transform into crystalline phases. The thermal decomposition of the thus-formed Ba(NO(x))(2) species is also influenced by the coverage of BaO on the Pt(111) substrate: at low BaO coverages, these species decompose at significantly lower temperatures in comparison with those formed on thick BaO films due to the presence of a Ba(NO(x))(2)/Pt interface where the decomposition can proceed at lower temperatures. However, the thermal decomposition of the thick Ba(NO(3))(2) films follows that of bulk nitrates. Results obtained from these BaO/Pt(111) model systems under UHV and elevated pressure conditions clearly demonstrate that both the BaO film thickness and the applied NO(2) pressure are critical in the Ba(NO(x))(2) formation and subsequent thermal decomposition processes.  相似文献   

7.
The oxidation states formed during low-temperature oxidation (T < 500 K) of a Ru(0001) surface are identified with photoelectron spectromicroscopy and thermal desorption (TD) spectroscopy. Adsorption and consecutive incorporation of oxygen are studied following the distinct chemical shifts of the Ru 3d(5/2) core levels of the two topmost Ru layers. The evolution of the Ru 3d(5/2) spectra with oxygen exposure at 475 K and the corresponding O2 desorption spectra reveal that about 2 ML of oxygen incorporate into the subsurface region, residing between the first and second Ru layer. Our results suggest that the subsurface oxygen binds to the first and second layer Ru atoms, yielding a metastable surface "oxide", which represents the oxidation state of an atomically well ordered Ru(0001) surface under low-temperature oxidation conditions. Accumulation of more than 3 ML of oxygen is possible via defect-promoted penetration below the second layer when the initial Ru(0001) surface is disordered. Despite its higher capacity for oxygen accumulation, also the disordered Ru surface does not show features characteristic for the crystalline RuO2 islands. Development of lateral heterogeneity in the oxygen concentration is evidenced by the Ru 3d(5/2) images and microspot spectra after the onset of oxygen incorporation, which becomes very pronounced when the oxidation is carried out at T > 550 K. This is attributed to facilitated O incorporation and oxide nucleation in microregions with a high density of defects.  相似文献   

8.
Well-defined Pt-nanoparticles with an average diameter of 1 nm supported on a series of zeolite Y samples containing different monovalent (H+, Na+, K+, Rb+, and Cs+) and divalent (Mg2+, Ca2+, Sr2+, and Ba2+) cations have been used as model systems to investigate the effect of promotor elements in the oxidation of CO in excess oxygen. Time-resolved infrared spectroscopy measurements allowed us to study the temperature-programmed desorption of CO from supported Pt nanoparticles to monitor the electronic changes in the local environment of adsorbed CO. It was found that the red shift of the linear Pt-coordinated CO vibration compared to that of gas-phase CO increases with an increasing cation radius-to-charge ratio. In addition, a systematic shift from linear (L) to bridge (B) bonded CO was observed for decreasing Lewis acidity, as expressed by the Kamlet-Taft parameter alpha. A decreasing alpha results in an increasing electron charge on the framework oxygen atoms and therefore an increasing electron charge on the supported Pt nanoparticles. This observation was confirmed with X-ray absorption spectroscopy, and the intensity of the experimental Pt atomic XAFS correlates with the Lewis acidity of the cation introduced. Furthermore, it was found that the CO coverage increases with increasing electron density on the Pt nanoparticles. This increasing electron density was found to result in an increased CO oxidation activity; i.e., the T(50%) for CO oxidation decreases with decreasing alpha. In other words, basic promotors facilitate the chemisorption of CO on the Pt particles. The most promoted CO oxidation catalyst is a Pt/K-Y sample, which has a T(50%) of 390 K and a L:B intensity ratio of 2.7. The obtained results provide guidelines to design improved CO oxidation catalysts.  相似文献   

9.
The electronic and chemical (adsorption) properties of bimetallic Ag/Pt(111) surfaces and their modification upon surface alloy formation, that is, during intermixing of Ag and Pt atoms in the top atomic layer upon annealing, were studied by X‐ray photoelectron spectroscopy (XPS) and, using CO as probe molecule, by temperature‐programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), respectively. The surface alloys are prepared by deposition of sub‐monolayer Ag amounts on a Pt(111) surface at room temperature, leading to extended Ag monolayer islands on the substrate, and subsequent annealing of these surfaces. Surface alloy formation starts at ≈600–650 K, which is evidenced by core‐level shifts (CLSs) of the Ag(3d5/2) signal. A distinct change of the CO adsorption properties is observed when going to the intermixed PtAg surface alloys. Most prominently, we find the growth of a new desorption feature at higher temperature (≈550 K) in the TPD spectra upon surface alloy formation. This goes along with a shift of the COad‐related IR bands to lower wave number. Surface alloy formation is almost completed after heating to 700 K.  相似文献   

10.
The adsorption and decomposition of trimethylgallium (Ga(CH3)3, TMG) on Pd(111) and the effect of pre-covered H and O were studied by temperature programmed desorption spectroscopy and X-ray photoelectron spectroscopy. TMG adsorbs dissociatively at 140 K and the surface is covered by a mixture of Ga(CH3)x (x=1, 2 or 3) and CHx(a) (x=1, 2 or 3) species. During the heating process, the decomposition of Ga(CH3)3 on clean Pd(111) follows a progressive Ga-C bond cleavage process with CH4 and H2 as the desorption products. The desorption of Ga-containing molecules (probably GaCH3) is also identi ed in the temperature range of 275-325 K. At higher annealing temperature, carbon deposits and metallic Ga are left on the surface and start to di use into the bulk of the substrate. The presence of precovered H(a) and O(a) has a signi cant effect on the adsorption and decomposition behavior of TMG. When the surface is pre-covered by saturated H2, CH4, and H2 desorptions are mainly observed at 315 K, which is ascribed to the dissociation of GaCH3 intermediate. In the case of O-precovered surface, the dissociation mostly occurs at 258 K, of which a Pd-O-Ga(CH3)2 structure is assumed to be the precusor. The presented results may provide some insights into the mechanism of surface reaction during the lm deposition by using trimethylgallium as precursor.  相似文献   

11.
The substrate-induced oxidation upon prolonged annealing in UHV of ultrathin films of Ni and Cr vapor deposited on yttria-stabilized zirconia YSZ(100) was studied by X-ray photoelectron spectroscopy (XPS) to obtain information about the oxidation mechanism, determine the available quantity of reactive oxygen in YSZ, and investigate the thermal stability of the thin oxide films. Up to about 0.8 ML of Ni deposited at room temperature was oxidized to NiO at a constant rate at 650 K via the substrate, whereas at slightly higher coverage, the oxidation rate under identical conditions was drastically reduced. In contrast to Ni, up to 4.8 ML of Cr deposited at 275 K could be oxidized via the substrate to Cr2O3 upon extensive UHV annealing at increasing temperature up to 820 K, indicating a reactive oxygen content of at least 4 x 10(-6) with respect to the lattice oxygen in the YSZ specimen. The Cr2O3 decomposed to metallic Cr above about 800 K, whereas NiO was stable up to the maximum temperature of 875 K. These results indicate that the oxidation via the substrate is kinetically analogous to the gas-phase oxidation of bulk Ni and Cr. The reactive oxygen content of the single-crystal YSZ is larger than expected, and part of it is accommodated at the surface of the substrate. The thermal stability of the thin oxide films is determined by the oxygen exchange with YSZ and not by the respective bulk oxide thermodynamic decomposition temperature.  相似文献   

12.
Smooth and defect-rich Ru(0001) surfaces prepared under ultrahigh-vacuum (UHV) conditions have been loaded with oxygen under high-pressure (p 相似文献   

13.
The compound Ba(8)Hg(3)U(3)S(18) was obtained from the solid-state reaction at 1123 K of U, HgS, BaS, and S, with BaBr(2)/KBr or BaCl(2) as a flux. This material crystallizes in a new structure type in space group P6 of the hexagonal system with three formula units in a cell of dimensions a = 27.08(1) ?, c = 4.208(2) ?, and V = 2673(2) ?(3). The structure contains infinite chains of US(6) octahedra and nearly linear [S-Hg-S](2-) dithiomercurate anions, separated by Ba(2+) cations. In the temperature range 100-300 K, the paramagnetic behavior of Ba(8)Hg(3)U(3)S(18) can be fit to the Curie-Weiss law, resulting in μ(eff) = 5.40(4) μ(B), or 3.12(2) μ(B)/U. The compound displays an antiferromagnetic transition at T(N) = 59 K. Although the formal oxidation states of Ba, Hg, and S can be assigned as +2, +2, and -2, the oxidation state of U is less certain. On the basis of interatomic distance arguments and the magnetic susceptibility data, the compound is proposed to contain U in both +4 and +5 formal oxidation states.  相似文献   

14.
The metal–substrate and metal–metal interactions (MSI, MMI) represent important effects determining the properties of supported catalysts, gas sensors and gettering alloys. We investigated the MSI and MMI effects by the X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD) in the case of Pd films deposited on Al2O3 and Al substrates. The study shows that the particle-size dependent metal–substrate interaction plays an important role in CO–Pd chemisorption, namely, in the case of “aluminium rich” Pd–aluminium oxide interface. CO chemisorption exhibits a low-temperature desorption feature at 360 K characteristic for Pd–Al and very small Pd particles. The MSI is explained by the formation of a Pd–Al intermetallic interface exhibiting a strong bimetallic Pd–Al interaction.  相似文献   

15.
The rate of CO oxidation has been characterized on the stepped Pt(411) surface for oxygen pressures up to 0.002 Torr, over the 100-1000 K temperature range. CO oxidation was characterized using both temperature-programmed reaction spectroscopy (TPRS) and in situ soft X-ray fluorescence yield near-edge spectroscopy (FYNES). New understanding of the important role surface defects play in accelerating CO oxidation for oxygen pressure above 10(-5) Torr is presented in this paper for the first time. For saturated monolayers of CO, the oxidation rate increases and the activation energy decreases significantly for oxygen pressures above 10(-5) Torr. This enhanced CO oxidation rate is caused by a change in the rate-limiting step to a surface reaction limited process above 10(-5) Torr oxygen from a CO desorption limited process at lower oxygen pressure. For example, in oxygen pressures above 0.002 Torr, CO(2) formation begins at 275 K even for the CO saturated monolayer, which is well below the 350 K onset temperature for CO desorption. Isothermal kinetic measurements in flowing oxygen for this stepped surface indicate that activation energies and preexponential factors depend strongly on oxygen pressure, a factor that has not previously been considered critical for CO oxidation on platinum. As oxygen pressure is increased from 10(-6) to 0.002 Torr, the oxidation activation energies for the saturated CO monolayer decrease from 24.1 to 13.5 kcal/mol for reaction over the 0.95-0.90 ML CO coverage range. This dramatic decrease in activation energy is associated with a simple increase in oxygen pressure from 10(-5) to 10(-3) Torr. Activation energies as low as 7.8 kcal/mol were observed for oxidation of an initially saturated CO layer reacting over the 0.4-0.25 ML coverage range in oxygen pressure of 0.002 Torr. These dramatic changes in reaction mechanism with oxygen pressure for stepped surfaces are consistent with mechanistic models involving transient low activation energy dissociation sites for oxygen associated with step sites. Taken together these experimental results clearly indicate that surface defects play a key role in increasing the sensitivity of CO oxidation to oxygen pressure.  相似文献   

16.
Low energy electron diffraction, Auger electron spectroscopy, X-ray photoelectron spectroscopy and line of sight mass spectrometry have been used to study the adsorption and desorption of dimethyldisulfide (DMDS) on Au(111). At 300 K adsorption is dissociative, forming a chemisorbed adlayer of methylthiolate with a 1/3 ML, (sq rt 3 x sq rt 3)R30 degrees, structure. At 100 K adsorption is molecular, with dissociation to form the 1/3 ML (sq rt 3 x sq rt 3)R30 degrees methylthiolate structure occurring at 138-160 K. A physisorbed DMDS layer, with a coverage of 1/6 ML of DMDS, forms on top of the (sq rt 3 x sq rt 3)R30 degrees chemisorbed MT surface for T < or = 180 K, with multilayers forming for T < or = 150 K. In temperature programmed desorption, multilayers of DMDS desorbed with zero order kinetics and an activation energy of 41 kJ mol(-1); the physisorbed layer desorbed with first order kinetics, exhibiting repulsive lateral interactions with an activation energy which varied from 63 kJ mol(-1) (theta = 0) to 51 kJ mol(-1) (theta = 1); the chemisorbed methylthiolate layer desorbed associatively as DMDS via the physisorbed layer, the activation energy for the reaction, 2 methylthiolate --> physisorbed DMDS, exhibiting repulsive lateral interactions with an activation energy which varied from 65 kJ mol(-1) (theta = 0) to 61 kJ mol(-1) (theta = 1). The physisorbed disulfide layer explains the pre-cursor state adsorption kinetics observed in sticking probability measurement, while its relatively facile formation provides a mechanism by which thiolate self-assembled monolayers can become mobile at room temperature.  相似文献   

17.
We report results on the catalytic oxidation of carbon monoxide (CO) over clean Ir surfaces that are prepared reversibly from the same crystal in situ with different surface morphologies, from planar to nanometer-scale facets of specific crystal orientations and various sizes. Our temperature-programmed desorption (TPD) data show that both planar Ir(210) and faceted Ir(210) are very active for CO oxidation to form CO2. Preadsorbed oxygen promotes the oxidation of CO, whereas high coverages of preadsorbed CO poison the reaction by blocking the surface sites for oxygen adsorption. At low coverages of preadsorbed oxygen (< or = 0.3 ML of O), the temperature Ti for the onset of CO2 desorption decreases with increasing CO coverage. At high coverages of preadsorbed oxygen (> 0.5 ML of O), T(i) is < 330 K and is independent of CO coverage. Moreover, we find clear evidence for structure sensitivity in CO oxidation over clean planar Ir(210) versus that over clean faceted Ir(210): the CO2 desorption rate is sensitive to the surface morphological differences. However, no evidence has been found for size effects in CO oxidation over faceted Ir(210) for average facet size ranging from 5 to 14 nm. Energetically favorable binding sites for O/Ir(210) are characterized using density functional theory (DFT) calculations.  相似文献   

18.
A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.  相似文献   

19.
The structural evolution and thermal stability of perfluoro-pentacene (PF-PEN) thin films on Ag(111) have been studied by means of low-temperature scanning tunnelling microscopy (STM), low-energy electron diffraction (LEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). Well-defined monolayer films can be prepared by utilizing the different adsorption energy of mono- and multilayer films and selectively desorbing multilayers upon careful heating at 380 K, whereas at temperatures above 400 K, a dissociation occurs. In the first monolayer, the molecules adopt a planar adsorption geometry and form a well-ordered commensurate (6 × 3) superstructure where molecules are uniformly oriented with their long axis along the <110> azimuth. This molecular orientation is also maintained in the second layer, where molecules exhibit a staggered packing motif, whereas further deposition leads to the formation of isolated, tall islands. Moreover, on smooth silver surfaces with extended terraces, growth of PF-PEN onto beforehand prepared long-range ordered monolayer films at elevated temperature leads to needle-like islands that are uniformly aligned at substrate steps along <110> azimuth directions.  相似文献   

20.
A kinetic model is presented to describe the high temperature (1800 K < T < 3000 K) surface oxidation of particulate boron in a hydrocarbon combustion environment. The model includes a homogeneous gas-phase B/O/H/C oxidation mechanism consisting of 19 chemical species and 58 forward and reverse elementary reactions, multi-component gas-phase diffusion, and a heterogeneous surface oxidation mechanism consisting of ‘elementary’ adsorption and desorption reaction steps. Thermochemical and kinetic parameters for the surface reactions are estimated from available experimental data and/or elementary transition state arguments. The kinetic processes are treated using a generalized kinetics code, with embedded sensitivity analysis, for the combustion of a one-dimensional (particle radius), spherical particle. Model results are presented for the oxidation of a 200 μm boron particle in a JP-4/air mixture at ambient temperatures of 1400 K and 2000 K. These results include temperature and gas-phase species profiles as a function of radial distance and particle burning rates. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号