首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weak epitaxy growth (WEG) can afford high-mobility thin films of disk-like organic semiconductor of which mobility is up to the level of the corresponding single crystals. We investigated the WEG behavior and mechanism of planar phthalocyanine in the model system of metal-free phthalocyanine (H2Pc) grown on p-sexiphenyl (p-6P) ultrathin films (monolayers and double layers). Highly oriented H2Pc films with molecules standing up exhibited two kinds of different in-plane orientations, i.e., three sets of in-plane orientations and only one set of in-plane orientation, on p-6P monolayer and double-layer films, respectively. The surface geometrical channels of p-6P substrate dominated the oriented nucleation and growth of H2Pc film. Consequently, the H2Pc film showed incommensurate and commensurate epitaxy on p-6P ultrathin films.  相似文献   

2.
The large-size domain and continuous para-sexiphenyl (p-6P) ultrathin film was fabricated successfully on silicon dioxide (SiO2) substrate and investigated by atomic force microscopy and selected area electron diffraction. At the optimal substrate temperature of 180 degrees C, the first-layer film exhibits the mode of layer growth, and the domain size approaches 100 microm(2). Its saturated island density (0.018 microm(-2)) is much smaller than that of the second-layer film (0.088 microm(-2)), which begins to show the Volmer-Weber growth mode. The characteristic of liquid-like crystal of p-6P monolayer film and the adequate diffusion of p-6P molecules dominate the formation of large-size domain. The coalescence of large-size domains offers the possibility to grow high-quality p-6P monolayer film which provides excellent substrate for weak epitaxy growth of phthalocyanine compounds.  相似文献   

3.
We systematically investigated the weak epitaxy growth (WEG) behavior of a series of planar phthalocyanine compounds (MPc), i.e., metal-free phthalocyanine (H2Pc), nickel phthalocyanine (NiPc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), iron phthalocyanine (FePc), cobalt phthalocyanine (CoPc), grown on a p-sexiphenyl ( p-6P) monolayer film by selected area electron diffraction (SAED) and atomic force microscopy (AFM). Two types of epitaxial relations, named as incommensurate epitaxy and commensurate epitaxy, were identified between phthalocyanine compounds and the substrate of the p-6P film. The tiny variation of the lattice constant of phthalocyanine compounds can result in different crystal orientations. The change rule of incommensurate and commensurate epitaxy was extracted. The tendency of commensurate epitaxy becomes weaker as the lattice constant b increases, while it gets stronger as the substrate temperature is elevated. Large size and continuous H2Pc films can be obtained by controlling the growth conditions. The WEG method is generally applicable in the whole family of planar phthalocyanine compounds and may be used to fabricate other high-quality organic films.  相似文献   

4.
The initial growth stage of C(60) thin film on graphite substrate has been investigated by scanning tunneling microscopy in ultrahigh vacuum at room temperature. The C(60) layer grows in a quasi-layer-by-layer mode and forms round, monolayer high islands on the graphite surface. The islands are confined by terraces on the graphite surface and the mobility of C(60) fullerenes across steps is low in all layers. The second and all subsequent layers adopt a fractal-dendritic shape, which was confirmed by calculating the fractal dimension (D=1.74 prior to island coalescence) and is in agreement with a diffusion limited aggregation. The profound differences between the growth of C(60) layers on graphite (first layer) and on C(60) surfaces (second and higher layers) are caused by the restriction of the C(60) mobility on the highly corrugated fullerene surfaces. The orientation of the fractal islands follows the hexagonal symmetry of the densely packed (111) surface of the fullerene lattice, which introduces a bias in the direction of molecule movement. The differences in surface topography on the nanoscale determine the mode of film growth in this van der Waals bonded system.  相似文献   

5.
By UV-excited photoelectron emission microscopy (UV-PEEM) we investigated the microscopic growth behavior of organic thin films using 3,4,9,10-perylene-tetracarboxylicacid dianhydride (PTCDA) on a Ag(1 1 1) single crystal substrate as example. Direct, real time observation allows to correlate the initial growth modes and the related kinetic parameters with substrate properties like terrace width, step density, and step bunches from the submonolayer range up to 5 layers or more. Above room temperature PTCDA grows in a Stranski–Krastanov fashion: after completion of the first two stable layers three-dimensional islands are formed. The nucleation density strongly depends on the temperature and the substrate morphology thus affecting the properties of the organic film.  相似文献   

6.
The growth behavior of self-assembled monolayer films strongly depends on parameters such as solvent, water concentration in the solvent, substrate type, and deposition method. A further parameter, the temperature, is of particular importance. It has been found that growth kinetics, size, and shape of the structures obtained strongly depend on the deposition temperature. Thus, exact adjustment and control of the solution temperature is of crucial importance for investigation of deposition mechanisms. The development of a temperature control unit has been the basis for a series of experiments on deposition of octadecyltrichlorosilane (OTS) on silicon wafers to study the influence of temperature on growth kinetics and film structure. Characterization of the films was performed with ellipsometry and atomic-force microscopy. It has been found that octadecylsiloxane (ODS) island sizes decrease with increasing temperature. Furthermore, a characteristic temperature exists above which increasingly disordered deposition occurs. At low temperatures (5–10 °C) smaller dot-like features are observed besides larger fractally shaped islands characteristic for self-assembly growth of ODS films. Our results indicate that these small dot-like features originate from ordered aggregates in the adsorption solution and that they are the precursors of the formation of larger islands. However, they can only be observed at low temperatures, because at room temperature they coalesce quickly to form larger units, due to the high surface mobility.  相似文献   

7.
We have studied the growth of para-sexiphenyl (p-6P) on the Cu(110)-(2×1)O surface using reflectance difference spectroscopy (RDS) in combination with scanning tunneling microscopy (STM). The evolution of the optical anisotropy reveals that the growth of p-6P on the Cu(110)-(2×1)O surface at room temperature follows the Stranski-Krastanov growth mode with a two monolayer thick wetting layer. During all stages of growth, the p-6P molecules are well orientated with their long molecular axis aligned parallel to the Cu-O rows along the [001] direction of the Cu(110) substrate. The high packing density of the p-6P molecules in the first and second monolayer evidenced by RDS and STM is believed to be responsible for the switch from layer-by-layer to three-dimensional island growth.  相似文献   

8.
Molybdenum disulfide (molybdenite) monolayer islands and flakes have been grown on a copper surface at comparatively low temperature and mild conditions through sulfur loading of the substrate using thiophenol (benzenethiol) followed by the evaporation of Mo atoms and annealing. The MoS(2) islands show a regular Moire? pattern in scanning tunneling microscopy, attesting to their atomic ordering and high quality. They are all aligned with the substrate high-symmetry directions providing for rotational-domain-free monolayer growth.  相似文献   

9.
The growth of self-assembled monolayers from octadecyltrichlorosilane (OTS) on modified silicon surfaces has been investigated. The influence of different immersion times in a deactivation reagent on the growth mechanism and the ordering of the films has been studied. Characterization of the films and the submonolayer coverage has been performed with tapping mode atomic force microscopy, ellipsometry, and infrared spectroscopy. We found that a deactivation of active sites led to a higher mobility of adsorbed molecules on the surface resulting in circular islands of highly ordered alkylsiloxane. However, upon prolonged immersion in OTS these ordered islands did not continue to grow and full monolayer coverage could not be obtained. Instead, an exchange reaction with the deactivation reagent leading to a disordered film between the ordered islands was observed. This was confirmed by external reflection infrared spectroscopy.  相似文献   

10.
Among all organic semiconductors, pentacene has been shown to have the highest thin film mobility reported to date. The crystalline structure of the first few pentacene layers deposited on a dielectric substrate is strongly dependent on the dielectric surface properties, directly affecting the charge mobility of pentacene thin film OTFTs. Herein, we report that there is a direct correlation between the crystalline structure of the initial submonolayer of a pentacene film and the mobility of the corresponding 60-nm-thick films showing terrace-like structure, as confirmed by 2D grazing-incidence X-ray diffraction and atomic force microscopy. Specifically, multilayered pentacene films, grown from single crystal-like faceted islands on HMDS-treated surface, have shown much higher charge mobility (mu = 3.4 +/- 0.5 cm2/Vs) than those with polycrystalline dendritic islands (mu = 0.5 +/- 0.15 cm2/Vs) on OTS-treated ones.  相似文献   

11.
The island growth of SiCGe films on SiC at different temperatures has been investigated by SEM and transmission electron microscope (TEM). The island growth of SiCGe thin films depends on the processing parameter such as the growth temperature and follows the Stranski‐Krastanov (SK) mode. When the growth temperature is comparatively low, the thin film has two types of islands: one is a SiGe sphere‐like island of diamond‐cubic structure; another is a SiCGe cascading triangular island of zinc‐blende structure. As the growth temperature increases, the quantity of the sphere‐like islands reduces, while that of the cascading triangular islands increases. When the growth temperature is about 1060 °C, only cascading triangular islands are observed on the surface of the thin film, and the thickness of the 2D interfacial growth layer formed at the initial stage of the growth process is about 40 nm, which is twice of that grown at low temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The growth of Au clusters on a fullerene thin film was investigated by in situ photoelectron spectroscopy in the ultraviolet (UPS) and x-ray (XPS) regime. Due to its highly corrugated surface fullerene films provide a wide range of bonding sites which could be exploited as molecular templates and serve to create a cluster superstructure. To gain insight into the fullerene-Au interaction two types of experiments were performed: (i) the deposition of Au on a fullerene surface, and (ii) the deposition of fullerenes on a Au surface. In both experiments an island growth mode is observed. The deposition of submonolayer amounts of C60 onto a gold film showed that the main interaction of the two species is due to chemisorption of the first C60 monolayer. In addition a constant band bending in the fullerene film is detected, but the UPS valence-band spectra show that there is no charge transfer from the Au to the C60 lowest unoccupied molecular orbital. In the reverse experiment, the cluster growth of Au on the corrugated C60 surface, the analysis of the Au core level does not reveal a specific bonding or nucleation site for Au atoms and clusters. This is in contrast to observations with Si clusters, which prefer to reside in the troughs between the fullerene molecules. The Au clusters grow continually from a size of about 55 atoms for the early stages of growth up to 150 atoms for the deposition of a nominal coverage of 1.5 nm. These data are derived from an analysis of the d-band splitting and the Au 4f core-level shift due to delayed photohole relaxation. The thermal stability of the Au-clusters-covered fullerene film was investigated by annealing in situ up to temperatures of 650 degrees C. For temperatures up to 450 degrees C a continuous growth of the clusters is detected, which is accompanied by a slight drop in Au concentration in the range of XPS for annealing temperatures higher than 350 degrees C. This may be due to a ripening of the clusters. The presence of Au apparently delays fullerene sublimation. The film shows a very good thermal stability and even after annealing at 650 degrees C there is still a fullerene film detectable in the photoelectron spectroscopy spectra.  相似文献   

13.
Phase separation in thin film blends of poly(tert-butyl acrylate) (PtBA) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), is studied as functions of annealing temperature and time, using reflected light optical microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results demonstrate that the PtBA/TPP blend system confined to thin films ( approximately 90 nm) exhibits lower critical solution temperature (LCST) behavior with a critical temperature of approximately 70 degrees C and a critical composition of 60 wt % PtBA with insignificant dewetting at the phase boundary. Off-critical spinodal behavior is observed for 58 and 62 wt % PtBA blend films. Phase separation by nucleation and growth is observed for all compositions outside the window between 58 and 62 wt % PtBA. The temporal evolution of spinodal decomposition in 60 wt % PtBA blend films is explored at annealing temperatures of 75, 85, 95, and 105 degrees C. The morphological evolution in 60 wt % PtBA blend films is similar for all experimental temperatures (75, 85, 95, and 105 degrees C) with the expected shorter time scales for phase evolution at higher annealing temperatures. Fast Fourier transforms of optical micrographs reveal that these blend films immediately undergo phase separation by spinodal decomposition during temperature jump experiments. Power law scaling for the characteristic wavevector with time (q approximately t(n) with n approximately -1/4 to -1/3) for domain growth during the early stages of phase separation yields to domain pinning at the later stages for 60 wt % PtBA blend films annealed at 75, 85, and 95 degrees C. In contrast, domain growth is pinned over the entire experimental time scale for 60 wt % PtBA blend films annealed at 105 degrees C.  相似文献   

14.
The growth of octadecyltrimethylammonium bromide (C(18)TAB) monolayers on mica was investigated using atomic force microscopy and infrared spectroscopy. A critical temperature was identified below which the monolayer formed via an "islanding" mechanism, that is, nucleation and growth of densely packed two-dimensional (2D) islands within a matrix of a disordered dilute phase. However, above the critical temperature, there was no coexistence of 2D phases during film formation. Instead, the monolayer gradually became better ordered, remaining laterally homogeneous throughout. We show that this corresponds to a critical point in a 2D phase diagram of the monolayer. Additional evidence is provided by the in situ observation of 2D phase separation upon cooling an incomplete monolayer from the one-phase to the two-phase region. The lack of coexisting domains (and domain boundaries) during growth above the critical point provides a possible route for the preparation of essentially defect-free monolayers.  相似文献   

15.
To investigate the effects of the phase state (ordered or disordered) of self-assembled monolayers (SAMs) on the growth mode of pentacene films and the performance of organic thin-film transistors (OTFTs), we deposited pentacene molecules on SAMs of octadecyltrichlorosilane (ODTS) with different alkyl-chain orientations at various substrate temperatures (30, 60, and 90 degrees C). We found that the SAM phase state played an important role in both cases. Pentacene films grown on relatively highly ordered SAMs were found to have a higher crystallinity and a better interconnectivity between the pentacene domains, which directly serves to enhance the field-effect mobility, than those grown on disordered SAMs. Furthermore, the differences in crystallinity and field-effect mobility between pentacene films grown on ordered and disordered substrates increased with increasing substrate temperature. These results can be possibly explained by (1) a quasi-epitaxy growth of the pentacene film on the ordered ODTS monolayer and (2) the temperature-dependent alkyl chain mobility of the ODTS monolayers.  相似文献   

16.
The adsorption, desorption, and growth kinetics as well as the thin film morphology and crystal structure of p-quaterphenyl (4P) grown under ultrahigh vacuum conditions on single crystalline Au(111) have been investigated. Thermal desorption spectroscopy (TDS) reveals two distinct first-order peaks attributed to monolayer desorption followed by a zero-order multilayer desorption. The saturation coverage of the full 4P monolayer has been quantitatively measured with a quartz microbalance to be 8 x 10(13) molecules/cm2. Using low energy electron diffraction the structures of the 0.5 and 1 ML (monolayer) adsorbates have been studied, showing highly regular arrangements of the 4P molecules, which are affected by the (111) surface structure. At the transition from 0.5 to 1 ML a structural compression of the overlayer has been observed. The behavior of thicker 4P films has been investigated by combined TDS-XPS (XPS-x-ray photoelectron spectroscopy). A temperature-induced recrystallization process at about 270 K has been observed for a 7 nm thick 4P film grown at 93 K, corresponding to a transition from a disordered layerlike growth to a crystalline island growth. Ex situ optical microscopy and atomic-force microscopy investigations have revealed needle-shaped 4P islands. Applying x-ray diffraction the crystalline order and epitaxial relationship of the 4P films with 30 nm and 200 nm mean thicknesses have been determined.  相似文献   

17.
A novel self-assembled C60 film was prepared by chemical adsorption of C60 molecules onto an amino-group-containing polyethyleneimine-coated silicon substrate surface. The contact angle of distilled water on the C60 film was measured, the thickness was determined by means of ellipsometric analysis, and the morphology was observed with an atomic force microscope. The tribological properties of the films were investigated as well. It was found that the C60 thin film had a contact angle of about 72 degrees and thickness of 1.8 nm and exhibited a surface domain microstructure composed of fullerene clusters. Due to the hydrophobicity and low surface energy, the C60 film possessed good adhesive resistance and had an adhesive force of about 7.1 nN, which was about an order of magnitude lower than that of the silicon substrate surface. Moreover, the C60 film showed good friction reduction, load-carrying capacity, and antiwear ability, which were attributed to the higher mechanical stiffness and elastic modulus of C60 molecules. Besides, the friction coefficient decreased with increasing sliding velocity and normal loads, due to the rolling effect of the physisorbed C60 molecules.  相似文献   

18.
We have investigated the influence of the interplay of the temperature and the water concentration in the adsorption solution on the growth of self-assembled monolayers on silicon using octadecyltrichlorosilane as the precursor. Toluene has been used as the solvent. The morphology of the submonolayer films has been investigated by atomic force microscopy (AFM). The surface coverages have been determined both with ellipsometry and through quantitative evaluation of AFM images. The size distribution of species in the precursor solution has been studied with dynamic light scattering. The influence of water concentrations between 8 and 18 mmol/L has been investigated in the temperature range from 2 to 35 degrees C. Dynamic light scattering revealed a unimodal size distribution of ordered aggregates in solution with a hydrodynamic radius of 200 nm regardless of the temperature and water concentration. However, formation of these features was faster at higher water contents and lower temperatures. Moreover, a characteristic temperature, which was higher for higher water concentrations, was found, above which such aggregates could not be detected anymore. Below this temperature an increase of the aggregate concentration has been observed until a plateau had been reached within a temperature range of approximately 5 degrees C. AFM measurements and ellipsometry on the corresponding submonolayer films showed that this temperature range is also associated with a transition from fast growth via characteristic fractally shaped islands to comparatively slow homogeneous growth via adsorption of individual molecules. The results are discussed in terms of diffusion and adsorption limitations.  相似文献   

19.
The structural evolution and thermal stability of perfluoro-pentacene (PF-PEN) thin films on Ag(111) have been studied by means of low-temperature scanning tunnelling microscopy (STM), low-energy electron diffraction (LEED), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). Well-defined monolayer films can be prepared by utilizing the different adsorption energy of mono- and multilayer films and selectively desorbing multilayers upon careful heating at 380 K, whereas at temperatures above 400 K, a dissociation occurs. In the first monolayer, the molecules adopt a planar adsorption geometry and form a well-ordered commensurate (6 × 3) superstructure where molecules are uniformly oriented with their long axis along the <110> azimuth. This molecular orientation is also maintained in the second layer, where molecules exhibit a staggered packing motif, whereas further deposition leads to the formation of isolated, tall islands. Moreover, on smooth silver surfaces with extended terraces, growth of PF-PEN onto beforehand prepared long-range ordered monolayer films at elevated temperature leads to needle-like islands that are uniformly aligned at substrate steps along <110> azimuth directions.  相似文献   

20.
A study of phenylalanine films of different thicknesses from submonolayer to 55 nm on Si wafers has been made using Bin+ and C60+ cluster primary ions in static SIMS. This shows that the effect of film thickness on ion yield is very similar for all primary ions, with an enhanced molecular yield at approximately 1 monolayer attributed to substrate backscattering. The static SIMS ion yields of phenylalanine at different thicknesses are, in principle, the equivalent of a static SIMS depth profile, without the complication of ion beam damage and roughness resulting from sputtering to the relevant thickness. Analyzing thin films of phenylalanine of different thicknesses allows an interpretation of molecular bonding to, and orientation on, the silicon substrate that is confirmed by XPS. The large crater size for cluster ions has interesting effects on the secondary ion intensities of both the overlayer and the substrate for monolayer and submonolayer quantities. This study expands the capability of SIMS for identification of the chemical structure of molecules at surfaces. © Crown copyright 2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号