首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
An acid–base switchable molecular shuttle based on a [2]rotaxane, incorporating stable radical units in both the ring and dumbbell components, is reported. The [2]rotaxane comprises a dibenzo[24]crown-8 ring (DB24C8) interlocked with a dumbbell component that possesses a dialkylammonium (NH2+) and a 4,4′-bipyridinium (BPY2+) recognition site. Deprotonation of the rotaxane NH2+ centers effects a quantitative displacement of the DB24C8 macroring to the BPY2+ recognition site, a process that can be reversed by acid treatment. Interaction between stable 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radicals connected to the ring and dumbbell components could be switched between noncoupled (three-line electron paramagnetic resonance (EPR) spectrum) and coupled (five-line EPR spectrum) upon displacement of the spin-labelled DB24C8 macroring. The complete base- and acid-induced switching cycle of the EPR pattern was repeated six times without an appreciable loss of signal, highlighting the reversibility of the process. Hence, this molecular machine is capable of switching on/off magnetic interactions by chemically driven reversible mechanical effects. A system of this kind represents an initial step towards a new generation of nanoscale magnetic switches that may be of interest for a variety of applications.  相似文献   

2.
The emergence of the mechanical bond during the past 25 years is giving chemistry a fillip in more ways than one. While its arrival on the scene is already impacting materials science and molecular nanotechnology, it is providing a new lease of life to chemical synthesis where mechanical bond formation occurs as a consequence of the all-important templation orchestrated by molecular recognition and self-assembly. The way in which covalent bond formation activates noncovalent bonding interactions, switching on molecular recognition that leads to self-assembly, and the template-directed synthesis of mechanically interlocked molecules—of which the so-called catenanes and rotaxanes may be regarded as the prototypes—has introduced a level of integration into chemical synthesis that has not previously been attained jointly at the supramolecular and molecular levels. The challenge now is to carry this level of integration during molecular synthesis beyond relatively small molecules into the realms of precisely functionalized extended molecular structures and superstructures that perform functions in a collective manner as the key sources of instruction, activation, and performance in multi-component integrated circuits and devices. These forays into organic chemistry by a scientific nomad are traced through thick and thin from the Athens of the North to the Windy City by Lake Michigan with interludes on the edge of the Canadian Shield beside Lake Ontario, in the Socialist Republic of South Yorkshire, on the Plains of Cheshire beside the Wirral, in the Midlands in the Heartland of Albion, and in the City of Angels beside the Peaceful Sea.  相似文献   

3.
Two new [2]rotaxane-based molecular shuttles, in which a mechanically bound dibenzo[24]crown-8 (DB24C8) macroring shunts back and forth between two dialkylammonium recognition sites situated on a chemical dumbbell, have been constructed by a novel synthetic strategy that relies upon the use of the tert-butoxycarbonyl (Boc) protecting group. During the syntheses of both molecular shuttles, this protecting group masks a dialkylammonium recognition center which is liberated only after the [2]rotaxane constitution is established. In both cases, the molecular shuttles' other dialkylammonium center is essential for the rotaxane-forming reactions and it ensures that DB24C8 is interpenetrated by threadlike precursors, as a result of noncovalent bonding interactions, to produce [2]pseudorotaxanes which are stoppered subsequently through 1,3-dipolar cycloadditions between azides and bulky acetylenedicarboxylates. The new molecular shuttles have been examined by means of dynamic 1H NMR spectroscopy, which reveals that the movements of the DB24C8 macroring are very highly dependent both on solvent properties and on the nature of the spacer unit linking the two dialkylammonium centers. Thus, DB24C8 shunts facilely between the dialkylammonium centers when the shuttles are dissolved in solvents that readily donate their nonbonding electrons into noncovalent bonds, e.g., DMF, and when spacer units that do not offer much steric resistance to shuttling, e.g., hexamethylene, are used. On the other hand, shuttling is difficult in solvents that are less inclined to donate their electrons into noncovalent bonds, e.g., (CDCl2)2, and when relatively bulky benzenoid spacer units, e.g., p-xylylene, link the two dialkylammonium centers. It has been proposed that the DB24C8 might act as a "ferry" which carries a proton between dialkylammonium and dialkylamine moieties in a singly protonated [2]rotaxane by means of ion-dipole interactions.  相似文献   

4.
Spin crossover requires cooperative behavior of the metal centers in order to become useful for devices. While cooperativity is barely predictable in solids, we show here that solution processing and the covalent introduction of molecular recognition sites allows the spin crossover of iron(III) sal(2)trien complexes to be rationally tuned. A simple correlation between the number of molecular recognition sites and the spin crossover temperature enabled the fabrication of materials that are magnetically bistable at room temperature. The predictable behavior relies on combining function (spin switching) and structure (supramolecular assembly) through covalent interactions in a single molecular building block.  相似文献   

5.
A combined DFT quantum mechanical and AMBER molecular mechanical potential (QM/MM) is presented for use in molecular modeling and molecular simulations of large biological systems. In our approach we evaluate Lennard-Jones parameters describing the interaction between the quantum mechanical (QM) part of a system, which is described at the B3LYP/6-31+G* level of theory, and the molecular mechanical (MM) part of the system, described by the AMBER force field. The Lennard-Jones parameters for this potential are obtained by calculating hydrogen bond energies and hydrogen bond geometries for a large set of bimolecular systems, in which one hydrogen bond monomer is described quantum mechanically and the other is treated molecular mechanically. We have investigated more than 100 different bimolecular systems, finding very good agreement between hydrogen bond energies and geometries obtained from the combined QM/MM calculations and results obtained at the QM level of theory, especially with respect to geometry. Therefore, based on the Lennard-Jones parameters obtained in our study, we anticipate that the B3LYP/6-31+G*/AMBER potential will be a precise tool to explore intermolecular interactions inside a protein environment.  相似文献   

6.
The recognition of bacteria by mammalian cells, or vice versa, involves specific, i.e. ligand-receptor interactions, and nonspecific, physicochemical factors, e.g. surface charge and hydrophobicity. Specific interactions can be of non-immunological character, viz. carbohydrate-specified, lectin-like cell-cell association, conveyed by bacterial adhesins, e.g. fimbriae or mammalian cell appendages for instance on macrophages. Other bacterial adhesins bind to receptor substances adsorbed onto the mammalian cells like serum proteins, or molecules being part of the histocompatibility antigen complex, e.g. β2-microglobulin. Immunological recognition comprises association between antibody or complement-coated (opsonized) particles with Fc- and C3b-receptors on phagocytic cells (polymorphonuclear leukocytes, macrophages, Kuppfer cells). On the other hand, these apparently specific interactions between ligands and receptors identified at the molecular level, also achieve general physicochemical alterations.

The present communication reviews experimental data on the dualistic character of the association between bacteria and animal cells, i.e. the interplay between specific and non-specific factors that promote or counteract cell-cell recognition.  相似文献   

7.
A [2]rotaxane-based molecular shuttle comprised a macrocycle mechanically interlocked to a chemical "dumbbell" has been prepared in high yields by a thermodynamically controlled, template-induced clipping procedure. This molecular shuttle has two different recognition sites, namely, -NH2 +- and amide, separated by a phenyl unit. The macrocycle exhibits high selectivity for the -NH2+- recognition sites in the protonated form through noncovalent interactions, which include 1) N+-H...O hydrogen bonds; 2) C-H...O interactions between the CH2NH2+CH2 protons on the thread and the oligo(ethylene glycol) unit in the macrocycle; 3) pi...pi stacking interaction between macrocycle and aromatic unit. Upon deprotonation of the [2]rotaxane the macrocycle glides to the amide recognition site due to the hydrogen bonds between the -CONH- group and the oligo(ethylene glycol) unit in the macrocycle. The deprotonation process requires about 10 equivalents of base (iPr2NEt) in polar acetone, while the amount of base is only 1.2 equivalents in apolar tetrachloroethane. Upon addition of Li+, the conformation of the [2]rotaxane was altered as a result of the collective interactions of 1) hydrogen bonds between pyridine nitrogen and amide hydrogen atoms; 2) coordination between the oligo(ethylene glycol) unit, amide oxygen atom and Li+ cation. Then, when Zn2+ ions are added, the macrocycle returns to the deprotonated -NH- recognition site owing to coordination of the macrocycle and -NH- from the axle with the Zn2+ ion. All the above-mentioned movement processes are reversible through the alternate addition of TFA/iPr2NEt, Li/[12]-crown-4 and Zn2+/ethylenediaminetetraacetate (EDTA), by virtue of hydrogen bonding and metal-ion complexation. Significantly, the three independent movement processes are all accompanied by fluorescent responses: 1) complete repression in the protonated form; 2) low-level expression in the deprotonated form; 3) medium-level expression following addition of Li+; 4) high-level expression on complexation with Zn2+.  相似文献   

8.
9.
A remarkable challenge for the design of molecular machines is the realization of a synchronized and unidirectional movement caused by an external stimulus. Such a movement can be achieved by a unidirectionally controlled change of the conformation or the configuration. Biphenol derivatives are one possibility to realize a redox-driven unidirectional molecular switch. For this reason, a 4,4'-biphenol derivative was fixed to a chiral cyclopeptidic scaffold and stimulated by chemical oxidants and reduction agents. The conformation of the switch was determined by DFT calculations by using B3LYP and the 6-31G* basis set. The switching process was observed by UV and circular dichroism (CD) spectroscopic measurements. Several oxidation agents and various conditions were tested, among which (diacetoxy)iodobenzene (DAIB) in methanol proved to be the best. In this way it was possible to synthesize a redox-stimulated molecular switch with a movement that is part of a rotation around a biaryl binding axis.  相似文献   

10.
Introducing responsive elements into supramolecular recognition systems offers great advantages for the control of intermolecular interactions and represents an important stepping stone towards multi-purpose and reprogrammable synthetic systems. Of particular interest is implementation of light-responsiveness because of the unique ease and precision of this signal. Here we present visible light responsive hemithioindigo-based molecular tweezers that bear a highly polar sulfoxide function as an additional recognition unit inside their binding site. Sulfur oxidation allows to simultaneously enhance all crucial properties of this receptor type i.e. photoswitching capability, thermal stability of individual switching states, binding affinity, and binding modulation upon switching. With a novel titration method the thermodynamic binding parameters were determined using reduced sample amounts. Employing these strongly enhanced molecular tweezers allowed to demonstrate photocontrol of intermolecular charge transfer in a reversible manner.

Hemithioindigo based molecular tweezers with a comprehensively improved property profile are obtained by simple oxidation of the sulfur atom.  相似文献   

11.
We report on the kinetics and ground-state thermodynamics associated with electrochemically driven molecular mechanical switching of three bistable [2]rotaxanes in acetonitrile solution, polymer electrolyte gels, and molecular-switch tunnel junctions (MSTJs). For all rotaxanes a pi-electron-deficient cyclobis(paraquat-p-phenylene) (CBPQT4+) ring component encircles one of two recognition sites within a dumbbell component. Two rotaxanes (RATTF4+ and RTTF4+) contain tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) recognition units, but different hydrophilic stoppers. For these rotaxanes, the CBPQT4+ ring encircles predominantly (>90 %) the TTF unit at equilibrium, and this equilibrium is relatively temperature independent. In the third rotaxane (RBPTTF4+), the TTF unit is replaced by a pi-extended analogue (a bispyrrolotetrathiafulvalene (BPTTF) unit), and the CBPQT4+ ring encircles almost equally both recognition sites at equilibrium. This equilibrium exhibits strong temperature dependence. These thermodynamic differences were rationalized by reference to binding constants obtained by isothermal titration calorimetry for the complexation of model guests by the CBPQT4+ host in acetonitrile. For all bistable rotaxanes, oxidation of the TTF (BPTTF) unit is accompanied by movement of the CBPQT4+ ring to the DNP site. Reduction back to TTF0 (BPTTF0) is followed by relaxation to the equilibrium distribution of translational isomers. The relaxation kinetics are strongly environmentally dependent, yet consistent with a single electromechanical-switching mechanism in acetonitrile, polymer electrolyte gels, and MSTJs. The ground-state equilibrium properties of all three bistable [2]rotaxanes were reflective of molecular structure in all environments. These results provide direct evidence for the control by molecular structure of the electronic properties exhibited by the MSTJs.  相似文献   

12.
Respinomycin D is a member of the anthracycline family of antitumour antibiotics that interact with double stranded DNA through intercalation. The clinical agents daunomycin and doxorubicin are the most well-studied of this class but have a relatively simple molecular architecture in which the pendant daunosamine sugar resides in the DNA minor groove. Respinomycin D, which belongs to the nogalamycin group of anthracyclines, possesses additional sugar residues at either end of the aglycone chromophore that modulate the biological activity but whose role in molecular recognition is unknown. We report the NMR structure of the respinomycin D-d(AGACGTCT)2 complex in solution derived from NOE restraints and molecular dynamics simulations. We show that the drug threads through the DNA double helix forming stabilising interactions in both the major and minor groove, the latter through a different binding geometry to that previously reported. The bicycloaminoglucose sugar resides in the major groove and makes specific contacts with guanine at the 5'-CpG intercalation site, however, the disaccharide attached at the C4 position plays little part in drug binding and DNA recognition and is largely solvent exposed.  相似文献   

13.
We report on the kinetics and ground‐state thermodynamics associated with electrochemically driven molecular mechanical switching of three bistable [2]rotaxanes in acetonitrile solution, polymer electrolyte gels, and molecular‐switch tunnel junctions (MSTJs). For all rotaxanes a π‐electron‐deficient cyclobis(paraquat‐p‐phenylene) (CBPQT4+) ring component encircles one of two recognition sites within a dumbbell component. Two rotaxanes (RATTF4+ and RTTF4+) contain tetrathiafulvalene (TTF) and 1,5‐dioxynaphthalene (DNP) recognition units, but different hydrophilic stoppers. For these rotaxanes, the CBPQT4+ ring encircles predominantly (>90 %) the TTF unit at equilibrium, and this equilibrium is relatively temperature independent. In the third rotaxane (RBPTTF4+), the TTF unit is replaced by a π‐extended analogue (a bispyrrolotetrathiafulvalene (BPTTF) unit), and the CBPQT4+ ring encircles almost equally both recognition sites at equilibrium. This equilibrium exhibits strong temperature dependence. These thermodynamic differences were rationalized by reference to binding constants obtained by isothermal titration calorimetry for the complexation of model guests by the CBPQT4+ host in acetonitrile. For all bistable rotaxanes, oxidation of the TTF (BPTTF) unit is accompanied by movement of the CBPQT4+ ring to the DNP site. Reduction back to TTF0 (BPTTF0) is followed by relaxation to the equilibrium distribution of translational isomers. The relaxation kinetics are strongly environmentally dependent, yet consistent with a single electromechanical‐switching mechanism in acetonitrile, polymer electrolyte gels, and MSTJs. The ground‐state equilibrium properties of all three bistable [2]rotaxanes were reflective of molecular structure in all environments. These results provide direct evidence for the control by molecular structure of the electronic properties exhibited by the MSTJs.  相似文献   

14.
《Chemical physics letters》1999,291(5-6):441-445
The dependence of the magnetization of model systems on an external magnetic field has been investigated. An ab initio path integral Monte Carlo method is used to study the spin level crossing phenomena of molecules with ring structures such as those in the ferric wheel [Fe(OMe)2(O2CCH2Cl)]10. The ab initio treatment is essential to calculate the magnetization in a system with a large contribution from next-neighbor interactions. A possible use as a molecular device for switching or molecular recognition is suggested.  相似文献   

15.
Protein-carbohydrate interactions are increasingly being recognized as essential for many important biomolecular recognition processes. From these, numerous biomedical applications arise in areas as diverse as drug design, immunology, or drug transport. We introduce SLICK, a package containing a scoring and an energy function, which were specifically designed to predict binding modes and free energies of sugars and sugarlike compounds to proteins. SLICK accounts for van der Waals interactions, solvation effects, electrostatics, hydrogen bonds, and CH...pi interactions, the latter being a particular feature of most protein-carbohydrate interactions. Parameters for the empirical energy function were calibrated on a set of high-resolution crystal structures of protein-sugar complexes with known experimental binding free energies. We show that SLICK predicts the binding free energies of predicted complexes (through molecular docking) with high accuracy. SLICK is available as part of our molecular modeling package BALL (www.ball-project.org).  相似文献   

16.
An approximation to the molecular mechanical treatment of structural deformations of macromolecules is presented. The method is based on a partitioning of the conformational energy into three parts. The first part is covered by the condensed potential functions which absorb many short-range nonbonding interactions. The second part consists of a few nonbonded interactions below a very short cutoff radius of 4 Å. The third part, consisting of the vast majority of pairwise interactions, is approximated by a quadratic expression confined to a subspace of the conformational space. A detailed computational example on LH-RH, including an analysis of the errors resulting from other conventional approximation methods, is given. A comparison to the conventional cutoff approximation used in x-ray refinement delivers a speedup factor of at least two orders of magnitude.  相似文献   

17.
Two redox-active bistable [2]catenanes composed of macrocyclic polyethers of different sizes incorporating both electron-rich 1,5-dioxynaphthalene (DNP) and electron-deficient 4,4'-bipyridinium (BIPY(2+)) units, interlocked mechanically with the tetracationic cyclophane cyclobis(paraquat-p-phenylene) (CBPQT(4+)), were obtained by donor-acceptor template-directed syntheses in a threading-followed-by-cyclization protocol employing Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloadditions in the final mechanical-bond forming steps. These bistable [2]catenanes exemplify a design strategy for achieving redox-active switching between two translational isomers, which are driven (i) by donor-acceptor interactions between the CBPQT(4+) ring and DNP, or (ii) radical-radical interactions between CBPQT(2(?+)) and BIPY(?+), respectively. The switching processes, as well as the nature of the donor-acceptor interactions in the ground states and the radical-radical interactions in the reduced states, were investigated by single-crystal X-ray crystallography, dynamic (1)H NMR spectroscopy, cyclic voltammetry, UV/vis spectroelectrochemistry, and electron paramagnetic resonance (EPR) spectroscopy. The crystal structure of one of the [2]catenanes in its trisradical tricationic redox state provides direct evidence for the radical-radical interactions which drive the switching processes for these types of mechanically interlocked molecules (MIMs). Variable-temperature (1)H NMR spectroscopy reveals a degenerate rotational motion of the BIPY(2+) units in the CBPQT(4+) ring for both of the two [2]catenanes, that is governed by a free energy barrier of 14.4 kcal mol(-1) for the larger catenane and 17.0 kcal mol(-1) for the smaller one. Cyclic voltammetry provides evidence for the reversibility of the switching processes which occurs following a three-electron reduction of the three BIPY(2+) units to their radical cationic forms. UV/vis spectroscopy confirms that the processes driving the switching are (i) of the donor-acceptor type, by the observation of a 530 nm charge-transfer band in the ground state, and (ii) of the radical-radical ilk in the switched state as indicated by an intense visible absorption (ca. 530 nm) and near-infrared (ca. 1100 nm) bands. EPR spectroscopic data reveal that, in the switched state, the interacting BIPY(?+) radical cations are in a fast exchange regime. In general, the findings lay the foundations for future investigations where this radical-radical recognition motif is harnessed in bistable redox-active MIMs in order to achieve close to homogeneous populations of co-conformations in both the ground and switched states.  相似文献   

18.
A high contrast tri‐state fluorescent switch (FSPTPE) with both emission color change and on/off switching is achieved in a single molecular system by fusing the aggregation‐induced emissive tetraphenylethene (TPE) with a molecular switch of spiropyran (SP). In contrast to most of the reported solid‐state fluorescent switches, FSPTPE only exists in the amorphous phase in the ring‐closed form owing to its highly asymmetric molecular geometry and weak intermolecular interactions, which leads to its grinding‐inert stable cyan emission in the solid state. Such an amorphous phase facilitates the fast response of FSPTPE to acidic gases and induces the structural transition from the ring‐closed form to ring‐open form, accompanied with the “Off” state of the fluorescence. The structural transition leads to a planar molecular conformation and high dipole moment, which further results in strong intermolecular interactions and good crystallinity, so when the acid is added together with a solvent, both the ring‐opening reaction and re‐crystallization can be triggered to result in an orange emissive state. The reversible control between any two of the three states (cyan/orange/dark) can be achieved with acid/base or mechanical force/solvent treatment. Because of the stable initial state and high color contrast (Δλ=120 nm for cyan/orange switch, dark state ΦF<0.01 %), the fluorescent switch is very promising for applications such as displays, chemical or mechanical sensing, and anti‐counterfeiting.  相似文献   

19.
A multiresponsive enamine‐based molecular switch is presented, in which forward/backward configurational rotation around the C=C bond could be precisely controlled by the addition of an acid/base or metal ions. Fluorescence turn‐on/off effects and large Stokes shifts were observed while regulating the switching process with CuII. The enamine functionality furthermore enabled double dynamic regimes, in which configurational switching could operate in conjunction with constitutional enamine exchange of the rotor part. This behavior was used to construct a prototypical dynamic covalent switch system through enamine exchange with primary amines. The dynamic exchange process could be readily turned on/off by regulating the switch status with pH.  相似文献   

20.
Modulated molecular recognition was achieved in a temperature‐sensitive molecularly‐imprinted polymer. Using PNIPA as the temperature‐sensitive element, the adenine‐imprinted polymer (i.e., MIP‐S) was prepared and characterized. The MIP‐S exhibited a temperature‐responsive molecular recognition behavior because of the thermal phase‐transition within the MIP‐S network. Specifically, below the transition temperature (e.g., 20 °C), the MIP‐S showed a highly specific recognition for the imprint species (adenine). However, the MIP‐S did not show any significant resolution for the imprint species (adenine) and its analogue (1‐methyladenine) above the transition temperature (e.g., 40 °C). Such temperature‐regulated recognition is comparable to a switch‐on and switch‐off process, thereby making tunable molecular recognition feasible. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2352–2360, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号