首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luminescent 50-nm silicon dioxide nanoparticles containing both types of rhodamine 6G (R; particles denoted R-SiO2) were synthesized by the sol–gel method. In the presence of Pb(Ac)2 as a heavy atom perturber the particle can emit the intense and stable room-temperature phosphorescence (RTP) signal of R on a polyamide membrane, with exmax/emmax=470/635 nm for R. Our research indicates that the specific immune reaction between goat-anti-human IgG antibody labeled with R-SiO2 and human IgG can be carried out quantitatively on a polyamide membrane, and the phosphorescence intensity was enhanced after the immunoreaction. Thus a new method for solid-substrate room-temperature phosphorescence immunoassay (SS-RTP-IA) for determination of human IgG was established on the basis of antibody labeled with the nanoparticles containing binary luminescent molecules. The linear range of this method is 0.0624–20.0 pg spot–1 of human IgG (corresponding to a concentration range of 0.156–50.0 ng mL–1, sample volume 0.40 L spot–1). The regression equations of the working curves are Ip=71.27+7.208mIgG (pg spot–1) (r=0.9996). Detection limits calculated as 3Sb/k are 0.022 pg spot–1. Compared with the same IA using fluorescein isothiocyanate (FITC) as the marker the new method was more sensitive and had a wider linear range. After elevenfold replicate measurement RSD are 4.5 and 3.6% for samples containing 0.156 and 50.0 ng mL–1 IgG, respectively. This method is sensitive, accurate, and of high precision.  相似文献   

2.
Potentially bi- and tetra-dentateSchiff bases derived from salicylaldehyde react with hydrated uranyl salts to give complexes: UO2H2 LX 2, UO2H2 LX 2 and UO2(HL)2 X 2 [H2 L=N,N-propane-1,3-diylbis(salicylideneimine), H2 L=N,N-ethylenebis(salicylideneimine) and HL=N-phenylsalicylideneimine;X =Cl, Br, I, NO3 , ClO4 , and NCS]. Because of marked spectral similrities with the structurally known Ca(H2 L) (NO3)2, theSchiff bases are coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms of the azomethine groups which carry the protons transferred from phenolic groups on coordination. Halide, nitrate, perchlorate and thiocyanate groups are covalently bonded to the uranyl ion, resulting a 6-coordinated uranium ion in the halo and thiocyanato complexes and 8-coordinated in nitrato and perchlorato complexes.
Komplexe von Dioxouranyl(VI) mit zwitterionischen Formen von zwei- und vierzähnigen Schiff-Basen
Zusammenfassung Von Salizylaldehyd abgeleitete zwei- und vierzähnigeSchiff-Basen reagieren mit hydratisierten Uranylsalzen zu Komplexen folgenden Typs: UO2H2 LX 2, UO2H2 LX 2 und UO2(HL)2 X 2 [H2 L=N,N-Propan-1,3-diylbis(salicylidenimin), H2 L=N,N-Ethylen-bis(salicylidenimin) und HL=N-Phenylsalicylidenimin;X =Cl, Br, I, NO3 , ClO4 und NCS]. Auf Grund eindeutiger spektraler Ähnlichkeiten mit dem bekannten Ca(H2 L) (NO3)2 wird auf Koordination über die negativ geladenen phenolischen Sauerstoffatome (und nicht über die Azomethin-Stickstoffe) geschlossen. Die AnionenX sind kovalent an das Uranyl-Ion gebunden; damit ergibt sich ein hexakoordiniertes Uranyl-Ion für die Halogen- und Thiocyanat-Komplexe und Oktakoordination für die Nitrat- und Perchlorat-Komplexe.
  相似文献   

3.
A new, simple, rapid, and sensitive spectrophotometric method has been developed for the determination of nitrophenols [picric acid (PA); dinitrophenols (DNP)] in wastewater samples. The method is based on the reaction of nitrophenols with 2-[(E)-2-(4-diethylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3 H-indolium chloride reagent to form the colored ion associates, which are extracted by organic solvents. The molar absorptivity of the ion associates of PA with the investigated reagent ranges from 8.3×104 to 11.3×104 L mol–1 cm–1, depending on the extractant. Because only PA is extracted in an acidic medium with the investigated reagent, but both PA and DNP are extracted in an alkaline medium, it is possible to determine both substances in a mixture. Appropriate reaction conditions have been established. The absorbance of the colored extracts obeys Beers law in the range of 0.04–4.58 mg L–1 PA, 1.0–18.4 mg L–1 2,4-DNP and 1.2–14.7 mg L–1 2,6-DNP, respectively. The limit of detections, calculated from a blank test (n=10; P=0.95), are 0.05 mg L–1 PA, 0.9 mg L–1 (2,4-DNP), and 1.1 mg L–1 (2,6-DNP), respectively.  相似文献   

4.
Four simple and sensitive spectrophotometric methods (A–D) for the determination of Ketotifen fumarate in bulk samples and pharmaceutical formulations are described. They are based on the formation of coloured species by the coupling of the diazotised sulphanilamide with the drug (method A, max 520 nm) or by oxidizing it with excessN-bromo-succinimide and determining the consumed NBS with decrease in colour intensity of celestine blue (method B: max 540 nm) or by the reduction of Folin-Ciocalteau reagent (method C: max 720 nm) or by the formation of a chloroform-soluble, coloured ionassociation complex between the drug and Azocarmine G at pH 1.5 (method D: max 540 nm). Regression analysis of Beer-Lambert plots showed good correlations in the concentration ranges 1–10, 2–12, 4–28 and 2.5–25 g/ml for methods A–D, respectively. The validity of the proposed methods was tested by analysing pharmaceutical formulations containing KTF: the relative standard deviations were within ±1.0%. Recoveries were 98.9–100.2%.  相似文献   

5.
This work describes an electroanalytical investigation of dopamine using cyclic voltammetry (CV) and the graphite–polyurethane composite electrode (GPU). In CV studies, well-defined redox peaks characterize the oxidation process at the GPU electrode, which is indicative of electrocatalytic effects associated with active sites on the GPU electrode surface. A new analytical methodology was developed using the GPU electrode and square wave voltammetry (SWV) in BR buffer solution (0.1 mol L–1; pH 7.4). Analytical curves were constructed under optimized conditions (f=60s–1, Ea=50 mV, EI=2 mV) and detection and quantification limits of 6.4×10–8 mol L–1 (12.1 g L–1) and 5.2×10–6 mol L–1 (0.9 mg L–1), respectively, were achieved. The precision of the method was checked by performing ten successive measurements for a 9.9×10–6 mol L–1 dopamine solution. For intra-assay and inter-assay precisions, the relative standard deviations were 1.9 and 2.3%, respectively. In order to evaluate the developed methodology, the determination of dopamine was performed with good sensitivity and selectivity, without the interference of ascorbic acid in synthetic cerebrospinal fluid, which indicates that the new methodology enables reliable analysis of dopamine.  相似文献   

6.
A simple, sensitive, and rapid reversed-phase high-performance liquid chromatographic method has been developed for determination of famotidine (FMT) and its impurities in pharmaceutical formulations. Separations were performed on a Supelcosil LC18 column with an isocratic mobile phase—13:87 (v/v) acetonitrile–0.1 M dihydrogen phosphate buffer containing 0.2% triethylamine (pH 3.0). The mobile phase flow rate was 1 mL min–1 and the detection wavelength was 265 nm. Response was linearly dependent on concentration between 1 and 80 g mL–1 (regression coefficient, R2, from 0.9981 to 0.9999). RSD from determination of method repeatability (intraday) and reproducibility (interday) were <2% (n=6). Lowest detectable concentrations ranged from 0.08 to 0.14 g mL–1. The proposed liquid chromatographic method can be satisfactorily used for routine quality control of famotidine in pharmaceutical formulations.  相似文献   

7.
Summary A kinetic study of the anaerobic oxidation of cysteine (H2 L) by iron(III) has been performed over thepH-range 2.5 to 12 by use of a stopped-flow high speed spectrophotometric method. Reaction is always preceded by complex formation. Three such reactive complex species have been characterized spectrophotometrically: FeL + (max=614 nm, =2 820 M–1cm–1); Fe(OH)L (max=503 nm; shoulder at 575 nm, =1 640 M–1cm–1); Fe(OH)L 2 2– (max=545 nm; shoulder at 445 nm, =3 175 M–1 cm–1). Formation constants have been evaluated from the kinetic data: Fe3++L 2– FeL +: logK 1 M =13.70±0.05; Fe(OH)2++L 2– Fe(OH)L: logK 1 MOH =10.75±0.02; Fe(OH)L+L 2– Fe(OH)L 2 2– ; logK 2 MOH =4.76±0.02. Furthermore the hydrolysis constant for iron(III) was also obtained: Fe(OH)2++H+ Fe aq 3+ : logK FeOH=2.82±0.02). Formation of the mono-cysteine complexes, FeL + and Fe(OH)L, is via initial reaction of Fe(OH)2+ with H2 L (k=1.14·104M–1s–1), the final product depending on thepH. FeL + (blue) formed at lowpH decomposes following protonation with a second-order rate constant of 1.08·105M–1s–1. Fe(OH)L (purple) decomposes with an apparent third order rate constant ofk=3.52·109M–2s–1 via 2 Fe(OH)L+H+ products, which implies that the actual (bimolecular) reaction involves initial dimer formation. Finally, Fe(OH)L 2 2– (purple) is remarkably stable and requires the presence of Fe(OH)L for electron transfer. A rate constant of 8.36·103M–1s–1 for the reaction between Fe(OH)L and Fe(OH)L 2 2– is evaluated.Dedicated to Prof. Dr. mult. Viktor Gutmann on the occasion of his 70th birthday  相似文献   

8.
Summary The species, UO2H3L, UO2H2L2–, UO2HL3–, UO2L4–, UO2(OH)L5– and UO2(OH)2L6– are found in the equilibria between uranyl ions and 3,3-bis[N,N-di(carboxymethyl)-aminomethyl]-o-cresolsulphonphthalein (H6L; xylenol orange; dcac) in aqueous solution. The equilibria have been studied by the potentiometric method at 25° and at an ionic strength of 0.1M (KNO3). New algebraic equations have been employed to evaluate the equilibrium constants.  相似文献   

9.
Under natural conditions gold has low solubility that reduces its bioavailability, a critical factor for phytoextraction. Researchers have found that phytoextraction can be improved by using synthetic chelating agents. Preliminary studies have shown that desert willow (Chilopsis linearis), a common inhabitant of the Chihuahuan Desert, is able to extract gold from a gold-enriched medium. The objective of the present study was to determine the ability of thiocyanate to enhance the gold-uptake capacity of C. linearis. Seedlings of this plant were exposed to the following hydroponics treatment: (1) 5 mg Au L–1 (2.5×10–5 mol L–1), (2) 5 mg Au L–1+10–5 mol L–1 NH4SCN, (3) 5 mg Au L–1+5×10–5 mol L–1 NH4SCN, and (4) 5 mg Au L–1+10–4 mol L–1 NH4SCN. Each treatment had its respective control. After 2 weeks we determined the effect of the treatment on plant growth and gold content by inductively coupled plasma–optical emission spectroscopy (ICP–OES). No signs of shoot-growth inhibition were observed at any NH4SCN treatment level. The ICP–OES analysis showed that addition of 10–4 mol L–1 NH4SCN increased the concentration of gold by about 595, 396, and 467% in roots, stems, and leaves, respectively. X-ray absorption spectroscopy (XAS) studies showed that the oxidation state of gold was Au(0) and that gold nanoparticles were formed inside the plants.  相似文献   

10.
New macromolecular chelators have been synthesized, by loading 2,3-dihydroxypyridine (DHP) on cellulose via linkers -NH-CH2-CH2-NH-SO2-C6H4-N=N- and -SO2-C6H4-N=N-, and characterized by elemental analysis, TGA, IR, and CPMAS 13C NMR spectra. The cellulose with DHP anchored by the shorter linker had better sorption capacity (between 69.7 and 431.1 mol g–1) for Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pb(II), and Fe(III)) than the other (51.9–378.1 mol g–1); the former was therefore studied in detail as a solid extractant for these metal ions. The optimum pH ranges for quantitative sorption (recovery 97.6–99.8%) on this matrix were: 7.0–9.0, 6.0–9.0, 3.0–8.0, 6.0–8.0, 6.0–9.0, 6.0–7.0, and 2.0–6.0 respectively. Desorption was quantitative with 0.5 mol L–1 HCl and 0.5 mol L–1 HNO3 (for Pb). Simultaneous sorption (at pH 7.0) of all metal ions other than Fe(III) was possible if their total concentration did not exceed the sorption capacity (lowest value). The recovery of seven metal ions from their mixture at pH 6.0 was nearly quantitative when the concentration level of each metal ion was 0.2 g mL–1. The optimum flow rate of metal ion solutions for quantitative sorption of metal onto a column packed with DHP-modified cellulose was 2–7 mL min–1, whereas for desorption the optimum flow rate for the acid solution was 2–4 mL min–1. The time needed to reach 50% of the total loading capacity (t1/2) was <5 min for all the metal ions except Ni and Pb. The limit of detection (blank+3s) was from 0.70 to 4.75 g L–1 and the limit of quantification (blank+10s) was between 0.79 and 4.86 g L–1. The tolerance limits for NaCl, NaBr, NaI, NaNO3, Na2SO4, Na3PO4, humic acid, EDTA, Ca(II), and Mg(II) for sorption of all metal ions are reported. The column packed with DHP-anchored cellulose can be reused at least 20 times for enrichment of metal ions in water sample. It has been used to enrich all the metal ions in pharmaceutical and water samples before their determination by flame AAS. RSD for these determinations was between 1.1 and 6.9%.  相似文献   

11.
A novel method, capillary electrophoresis with amperometric detection, has been established for rapid and effective measurement of levodopa (L-dopa), and benserazide (BS) and its impurity (R,S)-2-amino-3-hydroxypropanohydrazide (Ro-04-1419) in co-beneldopa pharmaceutical formulations. Suitable separation and amperometric detection conditions were investigated and optimized. The optimum conditions of CZE detection were 40 mm phosphate solution at pH 5.3 as running buffer, 17 kV separation voltage, carbon-disk working electrode, 0.95 V (relative to Ag/AgCl) as detection potential, and sample injection for 8 s at 17 kV. The linear ranges were from 1.25 to 50 g mL–1 for L-dopa, 1.2 × 10–1 to 25.5 g mL–1 for BS, and 1.0 × 10–2 to 4.4 × 10–1 g mL–1 for Ro-04-1419, with correlation coefficients of 0.9994, 0.9951, and 0.9933, respectively. The detection limits for L-dopa, BS, and Ro-04-1419 were 0.38, 0.02, and 0.004 g mL–1, respectively. Average recoveries were 100.2% for L-dopa, 102.4% for BS, and 90.8% for Ro-04-1419. This method was successfully applied to co-beneldopa granules and tablets.Revised: 30 November and 22 December 2004  相似文献   

12.
Stir-bar-sorptive extraction followed by liquid desorption and large-volume injection capillary gas chromatography with mass spectrometric detection (SBSE–LD–LVI-GC–MS), had been applied for the determination of ultra-traces of eight pyrethroid pesticides (acrinathrin, cypermethrin, deltamethrin, esfenvalerate, fenpropathrin, fenvalerate, and permethrin cis and trans isomers) in water samples. Instrumental calibration for selected-ion monitoring acquisition and conditions that could affect the SBSE–LD efficiency are fully discussed. By performing systematic assays on 30-mL water samples spiked at the 0.10 g L–1 level it was established that stir-bars coated with 47 L polydimethylsiloxane, an equilibrium time of 60 min (750 rpm), 5% methanol as organic modifier, and acetonitrile as back-extraction solvent, provided the best analytical performance to monitor pyrethroid pesticides in water matrices. Good accuracy (81.8–105.0%) and remarkable reproducibility (<11.7%) were obtained, and the experimental recovery data were in good agreement with the theoretical equilibrium described by octanol–water partition coefficients (log KO/W), with the exception of acrinathrin for which lower yields were measured. Excellent linear dynamic ranges between 25 and 400 ng L–1 (r2>0.994), low quantification (3.0–7.5 ng L–1) and detection (1.0–2.5 ng L–1) limits were also achieved for the eight pyrethroid pesticides studied. The method was successfully used for analysis of tapwater and groundwater matrices spiked at the 0.10 g L–1, revealing the suitability of the method for determination of pyrethroid pesticides in real samples. The method was shown be reliable and sensitive and a small volume of sample was required to monitor pyrethroids at ultra-trace levels, in compliance with international regulatory directives on water quality.  相似文献   

13.
The aim of the study was to develop an inductively coupled plasma mass spectrometry (ICPMS) method for robust and simple routine determination of selenium in serum. Polyatomic interferences on 76Se, 77Se, and 78Se were removed by applying an octopole reaction system ICPMS with the reaction cell pressurized with H2 gas. We developed a novel simple optimization routine for the H2 gas flow based on a signal-to-noise ratio (SNR) calculation of the selenium signal measured in a single selenium standard. The optimum H2 flow was 2.9 mL min–1. The selenium content in serum was determined after a 50-fold dilution with 0.16 M HNO3 and quantified by using addition calibration and gallium as an internal standard. The method detection limit was 0.10 g L–1 for 76Se and 78Se and 0.13 g L–1 for 77Se. Human serum samples from a case-control study investigating if selenium was associated with risk of colorectal adenoma were analyzed. The average selenium concentration for the control group (n=768) was 137.1 g L–1 and the range was 73.4–305.5 g L–1. The within-batch repeatability (a batch is ten samples) estimated from 182 replicate analyses was 6.3% coefficient of variation (CV), whereas the between-batch repeatability was 7.4% CV estimated from 361 replicates between batches. The method accuracy was evaluated by analysis of a human serum certified reference material (Seronorm Serum level II, Sero A/S, Norway). There was a fairly good agreement between the measured average of 145±3 g L–1 (n=36) and the certified value of 136±9 g L–1. In addition the method was successfully applied for analysis of zinc serum concentrations without further optimization. For the Seronorm certified reference material a value of 911±75 g L–1 (n=31) for zinc was obtained, which corresponds well to the certified zinc value of 920±60 g L–1.  相似文献   

14.
This work exploited the well-known iodine–starch reaction for development of a simple flow-injection (FI) method for determination of iodide in pharmaceutical samples. Iodide in an injected zone was oxidized to iodine. A gas diffusion unit enables selective permeation of iodine through a hydrophobic membrane. Detection was made very selective for elemental iodine by employing formation of the I3 –starch complex. The detection limit (3S/N) of the system was 1 mg I L–1. For a liquid patent medicine used for asthma treatment we suggested modification of the system. Direct injection of this sample, which contains a particularly high concentration level of iodide (ca. 9000 mg I L–1), can be achieved by coupling a dialysis unit to the FI system. This has increased the working range to 6000–10,000 mg I L–1 without employing complicated nanoliter injection.  相似文献   

15.
The reaction betweenL-arabinose and hydrated uranyl salts has been investigated in aqueous solution and the solid complexes of the type UO2(L-arabinose)X 2 · 2 H2O, whereX=Cl, Br, and NO 3 , have been isolated and characterized. Due to the marked similarities with those of the structurally known Ca(L-arabinose)X 2 · 4 H2O and Mg(L-arabinose)X 2 · 4 H2O (X=Cl or Br) compounds, the UO 2 2+ ion binds obviously to twoL-arabinose moieties, through O1, O5 of the first and O3, O4 of the second molecule resulting into a six-coordinated geometry around the uranium ion with no direct U-X (X=Cl, Br or NO 3 ) interaction. The intermolecular hydrogen bonding network of the freeL-arabinose is rearranged upon uranium interaction. The -anomer configuration is predominant in the freeL-arabinose, whereas the -anomer conformation is preferred in the uranium complexes.
Darstellung, spektroskopische und Strukturanalyse von Uran-Arabinose Komplexen
Zusammenfassung Es wurde die Reaktion zwischenL-Arabinose und hydratisierten Uranylsalzen in wäßriger Lösung untersucht und kristalline Komplexe des Typs UO2(L-Arabinose)X 2 · 2 H2O mitX=Cl, Br und NO 3 isoliert und charakterisiert. Wie aus markanten Ähnlichkeiten der Komplexe mit den bekannten Verbindungen Ca(L-Arabinose)X 2 · 4 H2O und Mg(L-Arabinose)X 2 · 4 H2O (X=Cl oder Br) abzuleiten ist, bindet das UO 2 2+ -Ion mit zweiL-Arabinose Einheiten, wobei sich durch die O1,O5-Koordination des ersten und die O3,O4-Koordination des zweiten Moleküls eine sechs-koordinierte Geometrie um das Uranylion [ohne direkte U-X (X=Cl, Br oder NO 3 ) Wechselwirkung] ausbildet. Die intermolekularen Wasserstoffbrücken zeigen nach der Wechselwirkung mit dem Uranylion eine Umgruppierung. In der freienL-Arabinose ist das -Anomere vorherrschend, in den Urankomplexen hingegen das -Anomere.
  相似文献   

16.
A high-performance thin layer chromatographic method coupled with densitometric analysis has been developed for measurement of benazepril and cilazapril, both pure and in their commercial dosage forms. The active substances were extracted from tablets with methanol (mean recovery 102%) and chromatographed on silica gel 60 F254 HPTLC plates in horizontal chambers with ethyl acetate–acetone–acetic acid–water, 8:2:0.5:0.5 (v/v), as mobile phase. Chromatographic separation of these ACE inhibitors was followed by UV densitometric quantitation at 215 nm. Calibration plots were constructed in the range 0.4 to 2.0 g L–1 for benazepril (2.0–10.0 g spot–1) and from 0.5 to 1.5 g L–1 for cilazapril (4.0–12.0 g spot–1) with good correlation coefficients (r 0.990). The method was used to determine benazepril and cilazapril in pharmaceutical preparations with satisfactory precision (1.4% < RSD < 5.6%) and accuracy (1.7 < RE < 5.1).  相似文献   

17.
A high-performance liquid chromatography (HPLC) method for the determination of acetaldehyde in fuel ethanol was developed. Acetaldehyde was derivatized with 0.900 mL 2,4-dinitrophenylhydrazine (DNPHi) reagent and 50 L phosphoric acid 1 mol L–1 at a controlled room temperature of 15°C for 20 min. The separation of acetaldehyde-DNPH (ADNPH) was carried out on a Shimadzu Shim-pack C18 column, using methanol/LiCl(aq) 1.0 mM (80/20, v/v) as a mobile phase under isocratic elution and UV–Vis detection at 365 nm. The standard curve of ADNPH was linear in the range 3–300 mg L–1 per injection (20 L) and the limit of detection (LOD) for acetaldehyde was 2.03 g L–1, with a correlation coefficient greater than 0.999 and a precision (relative standard deviation, RSD) of 5.6% (n=5). Recovery studies were performed by fortifying fuel samples with acetaldehyde at various concentrations and the results were in the range 98.7–102%, with a coefficient of variation (CV) from 0.2% to 7.2%. Several fuel samples collected from various gas stations were analyzed and the method was successfully applied to the analysis of acetaldehyde in fuel ethanol samples.  相似文献   

18.
Hydrophobic-interaction chromatography coupled on-line with chemical-vapor-generation atomic-fluorescence spectrometry (HIC–CVGAFS), optimized recently for the analysis of thiol-containing proteins under denaturing conditions, has been used to study the chemical reduction of denatured proteins. Four proteins chosen as models (human serum albumin (HSA), bovine serum albumin (BSA), -lactalbumin (-Lac) from bovine milk, and lysozyme from chicken egg (Lys)) were denatured with urea and reduced with dithiothreitol (DTT), with selenol as catalyst. The method is based on derivatization of the –SH groups of proteins with p-hydroxymercurybenzoate (PHMB), followed by HIC separation and post-column on-line reaction of the derivatized reduced, denatured proteins with bromine generated in situ. HgII, derived from rapid conversion of uncomplexed and protein-complexed PHMB, is selectively detected by AFS in an Ar/H2 miniaturized flame after sodium borohydride (NaBH4) reduction to Hg°. The yield of the reduction was studied as a function of reductant concentration, reduction time (tred), and urea concentration. Results showed that the optimum values for DTT and selenol concentrations and for tred were between 1 and 100 mmol L–1 and between 1 and 20 min, respectively, depending on the protein studied. The percentage disulfide bond reduction increases as the urea concentration used for protein denaturation increases, giving a single-step sigmoid increment for single-domain, low-MW proteins (-Lac and Lys), and a two-step sigmoid increment for multi-domain, high MW proteins (HSA and BSA). The shapes of plots of percentage reduced disulfide against urea concentration are characteristic of each protein and are correlated with the location of S–S in the protein. Under the adopted conditions complete protein denaturation is the conditio sine qua non for obtaining 100% S–S reduction. The detection limit for denatured, reduced proteins examined under the optimized conditions was found to be in the range 1–5×10–12 mol L–1 (10–30 pg), depending on the protein considered.  相似文献   

19.
A simple, rapid and sensitive spectrophotometric method is described for the quantitative determination ofN-substituted phenothiazines. The method depends on the formation of a stable phenothiazine free radical cation by the use ofN-bromophthalimide as oxidising agent in a strong acid medium (methanol/ sulphuric acid 1 1 v/v). The produced red or violet color possesses absorption maximum range from 500 to 530 nm. A linear relationship exists between the absorbance at (max) and concentration in the range 5 to 40 g ml–1 with apparent molar absorptivities range from 6 × 103 to 12 × 1031 mol–1 cm–1. The color is developed instantaneously for all the studied phenothiazines except for thioproperazine mesylate, trifluoperazine dihydrochloride and prochlorperazine mesylate that require 25, 15 and 25 min, respectively, for complete reaction. The developed colors are stable over 24 h. The average % recovery is 99.85±0.61 to 100.28±0.95. The method was applied successfully to the microdetermination of chlorpromazine HCl, promethazine HCl, pericyazine, thioproperazine mesylate, perphenazine, prochlorperazine mesylate, trimeprazine tartrate and trifluoperazine 2HCl either in pure form or incorporated in their pharmaceutical preparations. The results of analysis are in good agreement with those of the official B.P. 1988 and USP XXII.  相似文献   

20.
The binuclear complexes [(UO2bipy)2L1–3]NO3, (1–3), {H3L1–3=1-(2-hydroxybenzoyl)-2-(2-hydroxy-benzal/3-methoxybenzal/naphthal)hydrazine}, and [(UO2bipy)2L4–5](AcO)2, (4–5), [H2L4–5 = 1-(2-aminobenzoyl)-2-(2-hydroxy-benzal/naphthal)hydrazine], have been synthesised. Complexes (4–5) possess longer O=U=O bonds than those in the complexes (1–3) as the strong -donating phenolate is replaced by the amino group. The spectral data and electrochemical behaviour confirm the electronic nonequivalence of the coordination environments around the two uranyl ions in these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号