首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The problem of steady, laminar, mixed convection boundary-layer flow over a vertical cone embedded in a porous medium saturated with a nanofluid is studied, in the presence of thermal radiation. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis with Rosseland diffusion approximation. The cone surface is maintained at a constant temperature and a constant nanoparticle volume fraction. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved by Keller box method. A comparison is made with the available results in the literature, and our results are in very good agreement with the known results. A parametric study of the physical parameters is made and a representative set of numerical results for the local Nusselt and Sherwood numbers are presented graphically. Also, the salient features of the results are analyzed and discussed.  相似文献   

2.
The behavior of an incompressible laminar boundary layer flow over a wedge in a nanofluid with suction or injection has been investigated. The model used for the nanofluid integrates the effects of the Brownian motion and thermophoresis parameters. The governing partial differential equations of this problem, subjected to their boundary conditions, are solved by the Runge-Kutta-Gill technique with the shooting method for finding the skin friction and the rate of heat and mass transfer. The result are presented in the form of velocity, temperature, and volume fraction profiles for different values of the suction/injection parameter, Brownian motion parameter, thermophoresis parameter, pressure gradient parameter, Prandtl number, and Lewis number. The conclusion is drawn that these parameters significantly affect the temperature and volume fraction profiles, but their influence on the velocity profile is comparatively smaller.  相似文献   

3.
Nanofluid-based direct solar receivers, where nanoparticles in a liquid medium can scatter and absorb solar radiation, have recently received interest to efficiently distribute and store the thermal energy. The objective of the present work is to investigate theoretically the unsteady homogeneous Hiemenz flow of an incompressible viscous nanofluid past a porous wedge due to solar energy (incident radiation). The conclusion is drawn that the temperature is significantly influenced by magnetic strength, nanoparticle volume fraction, convective radiation and porosity of the wedge sheet.  相似文献   

4.
The thermal performance of a nanofluid in a cooling chamber with variations of the nanoparticle diameter is numerically investigated. The chamber is filled with water and nanoparticles of alumina (Al2O3). Appropriate nanofluid models are used to approximate the nanofluid thermal conductivity and dynamic viscosity by incorporating the effects of the nanoparticle concentration, Brownian motion, temperature, nanoparticles diameter, and interfacial layer thickness. The horizontal boundaries of the square domain are assumed to be insulated, and the vertical boundaries are considered to be isothermal. The governing stream-vorticity equations are solved by using a secondorder central finite difference scheme coupled with the mass and energy conservation equations. The results of the present work are found to be in good agreement with the previously published data for special cases. This study is conducted for the Reynolds number being fixed at Re = 100 and different values of the nanoparticle volume fraction, Richardson number, nanofluid temperature, and nanoparticle diameter. The results show that the heat transfer rate and the Nusselt number are enhanced by increasing the nanoparticle volume fraction and decreasing the Richardson number. The Nusselt number also increases as the nanoparticle diameter decreases.  相似文献   

5.
The steady flow and heat transfer of a hybrid nanofluid past a permeable stretching/shrinking wedge with magnetic field and radiation effects are studied. The governing equations of the hybrid nanofluid are converted to the similarity equations by techniques of the similarity transformation. The bvp4c function that is available in MATLAB software is utilized for solving the similarity equations numerically. The numerical results are obtained for selected different values of parameters. The resul...  相似文献   

6.
Numerical analysis is performed to examine laminar free convective of a nanofluid along a vertical wavy surface saturated porous medium. In this pioneering study, we have considered the simplest possible boundary conditions, namely those in which both the temperature and the nanoparticle fraction are constant along the wall. Non-similar transformations are presented for the governing equations and the obtained PDE are then solved numerically employing a fourth order Runge–Kutta method with shooting technique. A detailed parametric study (nanofluid parameters) is performed to access the influence of the various physical parameters on the local Nusselt number and the local Sherwood number. The results of the problem are presented in graphical forms and discussed.  相似文献   

7.
Heat transfer enhancement of a mixed convection laminar Al2O3–water nanofluid flow in an annulus with constant heat flux boundary condition has been studied employing two phase mixture model and effective expressions of nanofluid properties. The fluid flow properties are assumed constant except for the density in the body force, which varies linearly with the temperature (Boussinesq’s hypothesis), thus the fluid flow characteristics are affected by the buoyancy force. The Brownian motions of nanoparticles have been considered to determine the effective thermal conductivity and the effective dynamic viscosity of Al2O3–water nanofluid, which depend on temperature. Three-dimensional Navier–Stokes, energy and volume fraction equations have been discretized using the finite volume method while the SIMPELC algorithm has been introduced to couple the velocity–pressure. Numerical simulations have been presented for the nanoparticles volume fraction (?) between 0 and 0.05 and different values of the Grashof and Reynolds numbers. The calculated results show that at a given Re and Gr, increasing nanoparticles volume fraction increases the Nusselt number at the inner and outer walls while it does not have any significant effect on the friction factor. Both the Nusselt number and the friction coefficient at the inner wall are more than their corresponding values at the outer wall.  相似文献   

8.
Two phase mixture model is used to numerically simulate the turbulent forced convection of Al2O3-Water nanofluid in a channel with corrugated wall under constant heat flux. Both mixture and single phase models are implemented to study the nanofluid flow in such a geometry and the results have been compared. The effects of the volume fraction of nanoparticles, Reynolds number and amplitude of the wavy wall on the rate of heat transfer are investigated. The results showed that with increasing the volume fraction of nanoparticles, Reynolds number and amplitude of wall waves, the rate of heat transfer increases. Also the results showed that the mixture model yields to higher Nusselt numbers than the single phase model in a similar case.  相似文献   

9.
In this numerical study, the effects of variable thermal conductivity models on the combined convection heat transfer in a two-dimensional lid-driven square enclosure are investigated. The fluid in the square enclosure is a water-based nanofluid containing alumina nanoparticles. The top and bottom horizontal walls are insulated, while the vertical walls are kept at different constant temperatures. Five different thermal conductivity models are used to evaluate the effects of various parameters, such as the nanofluid bulk temperature, nanoparticle size, nanoparticle volume fraction, Brownian motion, interfacial layer thickness, etc. The governing stream–vorticity equations are solved by using a second-order central finite difference scheme coupled with the conservation of mass and energy. It is found that higher heat transfer is predicted when the effects of the nanoparticle size and bulk temperature of the nanofluid are taken into account.  相似文献   

10.
The steady laminar incompressible free convective flow of a nanofluid over a permeable upward facing horizontal plate located in porous medium taking into account the thermal convective boundary condition is studied numerically. The nanofluid model used involves the effect of Brownian motion and the thermophoresis. Using similarity transformations the continuity, the momentum, the energy, and the nanoparticle volume fraction equations are transformed into a set of coupled similarity equations, before being solved numerically, by an implicit finite difference numerical method. Our analysis reveals that for a true similarity solution, the convective heat transfer coefficient related with the hot fluid and the mass transfer velocity must be proportional to x −2/3, where x is the horizontal distance along the plate from the origin. Effects of the various parameters on the dimensionless longitudinal velocity, the temperature, the nanoparticle volume fraction, as well as on the rate of heat transfer and the rate of nanoparticle volume fraction have been presented graphically and discussed. It is found that Lewis number, the Brownian motion, and the convective heat transfer parameters increase the heat transfer rate whilst the thermophoresis decreases the heat transfer rate. It is also found that Lewis number and the convective heat transfer parameter enhance the nanoparticle volume fraction rate whilst the thermophoresis parameter decreases nanoparticle volume fraction rate. A very good agreement is found between numerical results of the present article for special case and published results. This close agreement supports the validity of our analysis and the accuracy of the numerical computations.  相似文献   

11.
This paper uses thermal non-equilibrium model to study transient heat transfer by natural convection of a nanofluid over a vertical wavy surface. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. Three-temperature model is applied to represent the local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. Finite difference method is used to solve the dimensionless governing equations of the problem. The obtained results are displayed in 2D graphs to illustrate the influences of the different physical parameters on local skin-friction coefficient, local Nusselt numbers for fluid, particle and solid phases and local Sherwood number. The results for velocity component, nanoparticle volume fraction, fluid temperature, particle temperature and solid-matrix temperature are presented in 3D graphs as a function of the axial and transverse coordinates. All the obtained results are discussed.  相似文献   

12.
A numerical study has been performed to analyze nanofluids convective heat transfer. Laminar α-Al2O3-water nanofluid flows in an entrance region of a horizontal circular tube with constant surface temperature. Numerical analysis has been carried out using two different single-phase models (homogenous and dispersion) and two-phase models (Eulerian–Lagrangian and mixture). A new model is developed to consider the nanoparticles dispersion. The transport equations for the tube with constant surface temperature were solved numerically using a control volume approach. The effects of nanoparticles volume fraction (0.5, 1 %) and Reynolds number (650 ≤ Re ≤ 2300) on nanofluid convective heat transfer coefficient were studied. The results are compared with the experimental data and it is shown that the homogenous single-phase model is underestimated and the mixture model is overestimated. Although the Eulerian–Lagrangian model gives a reasonable prediction for the thermal behavior of nanofluids, the dispersion single-phase model gives more accurate prediction despite its simplicity.  相似文献   

13.
A side heated two dimensional square cavity filled with a nanofluid is here studied. The side heating condition is obtained by imposing two different uniform temperatures at the vertical boundary walls. The horizontal walls are assumed to be adiabatic and all boundaries are assumed to be impermeable to the base fluid and to the nanoparticles. In order to study the behavior of the nanofluid, a non-homogeneous model is taken into account. The thermophysical properties of the nanofluid are assumed to be functions of the average volume fraction of nanoparticles dispersed inside the cavity. The definitions of the nondimensional governing parameters (Rayleigh number, Prandtl number and Lewis number) are exactly the same as for the clear fluids. The distribution of the nanoparticles shows a particular sensitivity to the low Rayleigh numbers. The average Nusselt number at the vertical walls is sensitive to the average volume fraction of the nanoparticles dispersed inside the cavity and it is also sensitive to the definition of the thermophysical properties of the nanofluid. Highly viscous base fluids lead to a critical behavior of the model when the simulation is performed in pure conduction regime. The solution of the problem is obtained numerically by means of a Galerkin finite element method.  相似文献   

14.
The TiO_2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem(BVP). The BVP is analytically solved with the homotopy analysis method(HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO_2 nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO_2 nanoparticles increases. This confirms the fact that the occurrence of the TiO_2 nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased.An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water,while the Nusselt number of the nanofluid is larger than that of pure water. However,both the parameters increase if the magnetic field intensity increases.  相似文献   

15.
Natural convective heat transfer and fluid flow in a vertical rectangular duct filled with a nanofluid is studied numerically assuming the thermal conductivity to be dependent on the fluid temperature. The transport equations for mass, momentum and energy formulated in dimensionless form are solved numerically using finite difference method. Particular efforts have been focused on the effects of the thermal conductivity variation parameter, Grashof number, Brinkman number, nanoparticles volume fraction, aspect ratio and type of nanoparticles on the fluid flow and heat transfer inside the cavity. It is found that the flow was enhanced for the increase in Grashof number, Brinkman number and aspect ratio for any values of conductivity variation parameter and for regular fluid and nanofluid. The heat transfer rate for regular fluid is less than that for the nanofluid for all governing parameters.  相似文献   

16.
In this investigation, we intend to present the influence of the prominent Soret effect on double-diffusive free convection heat and mass transfer in the boundary layer region of a semi-infinite inclined flat plate in a nanofluid saturated non-Darcy porous medium. The transformed boundary layer ordinary differential equations are solved numerically using the shooting and matching technique. Consideration of the nanofluid and the coupled convective process enhanced the number of non-dimensional parameters considerably thereby increasing the complexity of the present problem. A wide range of parameter values are chosen to bring out the effect of Soret parameter on the free convection process with varying angle of inclinations making the wall geometry from vertical to horizontal plate. The effects of angle of inclination and Soret parameter on the flow, heat and mass transfer coefficients are analyzed. The numerical results obtained for the velocity, temperature, volume fraction, and concentration profiles, local wall temperature, local nanoparticle concentration, and local wall concentration reveal interesting phenomenon, and some of these qualitative results are presented through the plots.  相似文献   

17.
The heat and mass transfer of two immiscible fluids in an inclined channel with thermal diffusion, vicious, and Darcy dissipation is studied. The first region consists of a clear fluid, and the second one is filled with a nanofluid saturated with a porous medium. The behaviors of Cu-H2O, In-H2O, and Au-H2O nanofluids are analyzed. The transport properties are assumed to be constant. The coupled non-linear equations of the flow model are transformed into the dimensionless form, and the solutions for the velocity, temperature, and concentration are obtained by the regular perturbation technique. Investigations are carried out on the flow characteristics for various values of the material parameters. The results show that the velocity and temperature of the fluids enhance with the thermal Grashof number, solutal Grashof number, and Brinkman number while decrease with the porosity parameter and solid volume fraction.  相似文献   

18.
The effects of nanoparticle dispersion on solidification of a Cu-n-hexadecane nanofluid inside a vertical enclosure are investigated numerically for different temperatures of the left vertical wall. An enthalpy porosity technique is used to trace the solid-liquid interface. The resulting nanoparticle-enhanced phase change materials (NEPCMs) exhibit enhanced thermal conductivity in comparison to the base material. The effect of the wall temperature and nanoparticle volume fraction are studied in terms of the solid fraction and the shape of the solid-liquid phase front. It has been found that a lower wall temperature and a higher nanoparticle volume fraction result in a larger solid fraction. The increase in the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage applications.  相似文献   

19.
In this study, the impacts of temperature, nanoparticles mass fraction, and basefluid types were investigated on the dynamic viscosity of CuO-loaded nanofluids. The nanoparticles were dispersed in deionized water, ethanol, and ethylene glycol as basefluids separately and the measurements were performed on samples with nanoparticles loads ranging from 0.005 to 5 wt%, and the temperature range of 25 to 70 °C. TEM analysis were performed on dried nanoparticles and the results showed the average mean diameter of CuO nanoparticles ranged from 10 to 50 nm. The results of DLS analysis confirmed the results of nanoparticles size obtained by TEM analysis in mentioned basefluids and Zeta-Potential tests exhibited the high stability of the nanoparticles in the basefluids environment. The results indicate that by adding tiny amount of CuO nanoparticles to basefluids, relative viscosity of nanofluid increases. By the increase in nanoparticles load higher than 0.1 wt% the effect of both nanoparticles mass fraction and temperature would be more tangible, while for nanoparticles mass fraction lower than 0.1 wt% no significant change in viscosity was observed. In addition, the results declare that viscosity of nanofluid remains constant at various applied shear rates indicating Newtonian behavior of nanofluid at various nanoparticles load and temperature. According to experimental data, it is also evident that with the increase in temperature, the value of relative dynamic viscosity decreases significantly. Also it is concluded that for CuO/ethanol nanofluid, more interfacial interaction is resulted that causes higher relative dynamic viscosity while for CuO/water lower interfacial interaction between nanoparticles surface and water molecules are resulted which leads to the lower values for this parameter. The results of this study implied that with increase the temperature from 25 to 70 °C at the condition where nanoparticles mass fraction was chosen to be 5 wt%, the value of dynamic viscosity of CuO/ethanol, CuO/deionized water, CuO/ethylene glycol declined 69%, 66%, and 65% respectively. Finally, a correlation was proposed for the relative dynamic viscosity of nanofluid based on the CuO nanoparticles mass fraction and temperature of the basefluid and nanoparticles.  相似文献   

20.
A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects.Buongiorno’s model is employed for describing the behavior of nanofluids.Different from the previous studies on two-layer channel flow of a nanofluid,the present paper introduces the flux conservation conditions for the nanoparticle volume fraction field,which makes this work new and unique,and it is in coincidence with practical observations.The governing equations are reduced into a group of ordinary differential equations via appropriate similarity transformations.The highly accurate analytical approximations are obtained.Important physical quantities and total entropy generation are analyzed and discussed.A comparison is made to determine the significance of electrical double layer(EDL)effects in the presence of an external electric field.It is found that the Brownian diffusion,the thermophoresis diffusion,and the viscosity have significant effects on altering the flow behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号