首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The differences between the molecular structures of the PCP-pincer complex [RuCl{C6H3(CH2P(C6H5)2)2-2,6}(PPh3)] ([RuCl(PCPH)(PPh3)], 1) and its tetrakis-pentafluorophenyl substituted analogue [RuCl{C6H3(CH2P(C6F5)2)2-2,6}(PPh3)] ([RuCl(PCPF20)(PPh3)], 2) have been rationalised by performing calculations on the cations [Ru(PCPH)(PPh3)]+ (1cat) and [Ru(PCPF20)(PPh3)]+ (2cat). The molecular interactions between the chloride ligand and the axial rings, as found in 1 and 2, respectively, have been studied computationally in the model systems [(C6X5PH2)2Cl] (X = H, F). The calculations on 2cat show that in 2 it is most likely the attractive electrostatic interaction between the chloride ligand and the fluorinated phenyl rings that forces the Cipso atom to occupy an axial position rather than an equatorial one in the observed (X-ray of 2) square pyramidal arrangement. In 1, however, repulsive steric hindrance forces the PPh3 ligand to take the apical position. The applicability of the TD-DFT method for the calculation of the electronic spectra of the PCP-pincer compounds 1 and 2 has been tested. The results indicate that the excitation energies calculated for both complexes are in a reasonable agreement with the experimental absorption maxima. However, for 1, all the calculated transition energies are underestimated.  相似文献   

2.
Three novel rhenium oxocomplexes of biologically relevant ligand 2-hydroxymethylbenzimidazole: cis-[ReOCl2(hmbzim)(PPh3)] (1), cis-[ReOBr2(hmbzim)(PPh3)] and [ReO(hmbzim)2(PPh3)](ReO4)·CH3OH (3) have been synthesized and characterized spectroscopically and structurally (by single-crystal X-ray diffraction). The electronic spectra of 1 and 3 were investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ. Additional information about binding in the complexes 1 and 3 was obtained by NBO analysis.  相似文献   

3.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

4.
The treatment of optically P-chiral tetraphosphine, (3S,6R,9R,12S)-6,9-di-tert-butyl-2,2,3,12,13,13-hexamethyl-3,6,9,12-tetraphosphatetradecane (1), with rhodium(I), palladium(II), and ruthenium(II) complex precursors led to the selective formation of mono-, di-, or trinuclear homo- or heterometallic complexes, [Rh(1)]SbF6 (4), [{Rh(nbd)}2(1)](SbF6)2 (3), [{Pd(η3-allyl)}2(1)](SbF6)2 (5), [{RuCl(η5-C5(CH3)5)}2(1)] (6), and [{RuCl26-benzene)}2(PdCl2)(1)] (8). These complexes were characterized by NMR and X-ray crystallographic analysis.  相似文献   

5.
Three novel rhenium oxocomplexes incorporating indazole-3-carboxylate ligand: cis-[ReOCl2(Ind-3-COO)(PPh3)]·OPPh3 (1a), cis-[ReOCl2(Ind-3-COO)(PPh3)] (1b) and cis-[ReOBr2(Ind-3-COO)(PPh3)]·OPPh3 (2) have been synthesized and characterised spectroscopically and structurally (by single-crystal X-ray diffraction). The 1a and 2 are isostructural in solid state. The electronic spectrum of 1a was investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ. Additional information about binding in the complex 1a was obtained by NBO analysis.  相似文献   

6.
Nickel(II) complexes of quinoline-2-carbaldehyde N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL1) and 2-benzoylpyridine N(4),N(4)-(butane-1,4-diyl) thiosemicarbazone (HL2) have been synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, magnetic measurements, electronic and infrared spectral studies. Three complexes were given the formulae [Ni(HL1)2]Cl2 (1), [Ni(HL2)L2]ClO4 · 7H2O (2) and [NiL2Cl] · 0.5H2O (3). The structure of compound 1 has been solved by single crystal X-ray crystallography and is found to be distorted octahedral. Compound 2, when crystallized in DMSO solution, got deprotonated to form a new compound [Ni(L2)2] (2a), with a distorted octahedral Ni(II) center. In compound 1, HL1 coordinates to the metal in the thione form, while in compounds 2a and 3, HL2 coordinates in its deprotonated thiolate form.  相似文献   

7.
Ten copper(II) complexes {[CuL1Cl] (1), [CuL1NO3]2 (2), [CuL1N3]2 · 2/3H2O (3), [CuL1]2(ClO4)2 · 2H2O (4), [CuL2Cl]2 (5), [CuL2N3] (6), [Cu(HL2)SO4]2 · 4H2O (7), [Cu(HL2)2] (ClO4)2 · 1/2EtOH (8), [CuL3Cl]2 (9), [CuL3NCS] · 1/2H2O (10)} of three NNS donor thiosemicarbazone ligands {pyridine-2-carbaldehyde-N(4)-p-methoxyphenyl thiosemicarbazone [HL1], pyridine-2-carbaldehyde-N(4)-2-phenethyl thiosemicarbazone [HL2] and pyridine-2-carbaldehyde N(4)-(methyl), N(4)-(phenyl) thiosemicarbazone [HL3]} were synthesized and physico-chemically characterized. The crystal structure of compound 9 has been determined by X-ray diffraction studies and is found that the dimer consists of two square pyramidal Cu(II) centers linked by two chlorine atoms.  相似文献   

8.
Novel rhenium complexes containing the maltolate (mal) or kojate (koj) anions as chelating ligands have been synthesized: [ReOCl(mal)2] (1), [ReOCl2(mal)(PPh3)] (2), [ReOBr2(mal)(PPh3)] (3), [ReOCl2(koj)(PPh3)] (4) and [ReOBr2(koj)(PPh3)] (5). The products have been characterized by FTIR, 1H, 13C, and 31P NMR spectroscopies and elemental analysis. The crystal and molecular structures of all complexes were determined. Complex 1 crystallizes monoclinic, space group C2/c, Z = 8. It contains two O,O′-bidentate maltolate ligands and one chloro ligand at the (ReO)3+ unit, so that a distorted octahedral geometry is adopted by the six-coordinated rhenium(V) center. The chloro ligand occupies a cis position to the oxo ligand. Complexes 2 and 3 are isostructural and crystallize orthorhombic, space group Pbca and Z = 8. The isostructural complexes 4 and 5 crystallize monoclinic, space group P21/n and Z = 4. In complexes 25, the (ReO)3+ unit is coordinated by a monoanionic O,O-bidentate unit of the maltolate (2 and 3) or kojate (4 and 5) ligand, one triphenylphosphine and two halogeno ligands (Cl in 2 and 4; Br in 3 and 5), with the rhenium(V) center in a distorted octahedral environment. The halide ligands are in cis positions to each other.  相似文献   

9.
Five mononuclear nickel(II) complexes, viz. [Ni(L1)(PPh3)] (1), [Ni(L2)(PPh3)] (2), [Ni(L3)(PPh3)] (3), [Ni(L4)(PPh3)] (4) and [Ni(L5)(PPh3)] (5) (where L1, L2, L3, L4 and L5 are dianions of N-(2-mercaptophenyl)salicylideneimine, 5-methyl-N-(2-mercaptophenyl)salicylideneimine, 5-chloro-N-(2-mercaptophenyl)salicylideneimine, 5-bromo-N-(2-mercaptophenyl)salicylideneimine and N-(2-mercaptophenyl)naphthylideneimine, respectively), have been synthesized and characterized by means of elemental analysis, electronic, IR, 1H, 13C and 31P NMR spectroscopy. Single crystal X-ray analysis of two of the complexes (1 and 5) has revealed the presence of a square planar coordination geometry (ONSP) about nickel. The crystal structures of the complexes are stabilized by intermolecular π–π stacking between the ligands (L) and by various C–H···π interactions.  相似文献   

10.
A series of half-sandwich ruthenium(II) complexes containing κ3(N,N,N)-hydridotris(pyrazolyl)borate (κ3(N,N,N)-Tp) and the water-soluble phosphane 1,3,5-triaza-7-phosphaadamantane (PTA) [RuX{κ3(N,N,N)-Tp}(PPh3)2−n(PTA)n] (n = 2, X = Cl (1), n = 1, X = Cl (2), I (3), NCS (4), H (5)) and [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)L][PF6] (L = NCMe (6), PTA (7)) have been synthesized. Complexes containing 1-methyl-3,5-diaza-1-azonia-7-phosphaadamantane(m-PTA) triflate [RuCl{κ3(N,N,N)-Tp}(m-PTA)2][CF3SO3]2 (8) and [RuX{κ3(N,N,N)-Tp}(PPh3)(m-PTA)][CF3SO3] (X = Cl (9), H (10)) have been obtained by treatment, respectively, of complexes 1, 2 and 5 with methyl triflate. Single crystal X-ray diffraction analysis for complexes 1, 2 and 4 have been carried out. DNA binding properties by using a mobility shift assay and antimicrobial activity of selected complexes have been evaluated.  相似文献   

11.
Reactions of the trans-PdCl2(PPh3)2 precursor with furan-2-carbaldehyde thiosemicarbazone (Hftsc) and thiophene-2-carbaldehyde thiosemicarbazone (Httsc), in 1:1 molar ratios in the presence of Et3N base, removed one Cl and one PPh3 group from the PdII center, and yielded the complexes [Pd(η2-N3,S-ftsc)(PPh3)Cl] (1) and [Pd(η2-N3,S-ttsc)(PPh3)Cl] (2), respectively. However, when a 1:2 molar ratio (M:L) was used, both Cl and PPh3 ligands were removed, yielding the complexes trans-[Pd(η2-N3,S-ftsc)2] (3) and trans-[Pd(η2-N3,S-ttsc)2] (4). Complexes 14 have been characterized with the help of analytical data, spectroscopic techniques (IR, 1H and 31P NMR) and single crystal X-ray crystallography. The thiosemicarbazone ligands behave as uninegative N3,S-chelating ligands in complexes 14. In contrast, pyrrole-2-carbaldehyde thiosemicarbazone (H2ptsc) and salicylaldehyde thiosemicarbazone (H2stsc) invariably formed the complexes [Pd(η3-N4,N3,S-ptsc)(PPh3)] (5) and [Pd(η3–O, N3,S-stsc)(PPh3)] (6), respectively, and the ligands acted as binegative tridentate donors (N4, N3, S, 5; O, N3, S, 6).  相似文献   

12.
The complexes [ReCl2{N2C(O)Ph}(Hpz)(PPh3)2] (1) (Hpz = pyrazole), [ReCl2{N2C(O)Ph}(Hpz)2(PPh3)] (2), [ReCl2(HCpz3)(PPh3)][BF4] (3) and [ReCl2(3,5-Me2Hpz)3(PPh3)]Cl (4) were obtained by treatment of the chelate [ReCl22-N,O-N2C(O)Ph}(PPh3)2] (0) with hydrotris(1-pyrazolyl)methane HCpz3 (1,3), pyrazole Hpz (1,2), hydrotris(3,5-dimethyl-1-pyrazolyl)methane HC(3,5-Me2pz)3 (4) or dimethylpyrazole 3,5-Me2Hpz (4). Rupture of a C(sp3)-N bond in HCpz3 or HC(3,5-Me2pz)3, promoted by the Re centre, has occurred in the formation of 1 or 4, respectively. All compounds have been characterized by elemental analyses, IR and NMR spectroscopy, FAB-MS spectrometry, cyclic voltammetry and, for 1 · CH2Cl2 and 3, also by single crystal X-ray analysis. The electrochemical EL Lever parameter has been estimated, for the first time, for the HCpz3 and the benzoyldiazenide NNC(O)Ph ligands.  相似文献   

13.
The reactions of [ReOX3(AsPh3)2] and [ReOX3(PPh3)2] with 2-(2′-hydroxyphenyl)-2-benzoxazoline (Hhbo) have been examined and [ReOX2(hbo)(AsPh3)] and [ReOX2(hbo)(PPh3)] (X = Cl, Br) complexes have been obtained. The crystal and molecular structures of [ReOCl2(hbo)(AsPh3)] (1) and [ReOBr2(hbo)(PPh3)] (4) have been determined. The electronic structures of 1 and 4 have been calculated with the density functional theory (DFT) method. The spin-allowed electronic transitions of 1 and 4 have been calculated with the time-dependent DFT method, and the UV–Vis spectra of these complexes have been discussed.  相似文献   

14.
Three novel imido rhenium complexes of biologically relevant ligand 2-hydroxymethylbenzimidazole: [Re(p-NC6H4CH3)Cl2(hmbzim)(PPh3)]·CHCl3 (1), [Re(p-NC6H4CH3)Br2(hmbzim)(PPh3)] (2) and [Re(p-NC6H4CH3)(hmbzim)2(PPh3)]ReO4·MeOH (3) have been synthesized and characterized spectroscopically and structurally (by single-crystal X-ray diffraction). The electronic spectra of 1 and 3 were investigated at the TDDFT level employing B3LYP functional in combination with LANL2DZ. Additional information about binding in the complexes 1 and 3 was obtained by NBO analysis, which confirms a linear coordination mode of the p-NC6H4CH3 ligand and triple bond between the rhenium and imido ligand.  相似文献   

15.
The synthesis and characterization of three new palladium(II) complexes of 4-amino-6-ethyl-1,2,4-triazine-3-thion-5-one (AETTO, H3L), [PdCl2(H3L)]·H2O (1), [Pd2Cl2(H2L)(PPh3)3]NO3·2CH3CN (2) and [Pd(HL)(PPh3)2] (3), are reported. All the synthesized compounds are air-stable and were characterized by elemental analyses, IR, NMR spectroscopy and mass spectrometry. In addition, the molecular structures of the complexes have been determined by X-ray single crystal diffraction. On the basis of the crystallographic data, the neutral ligand in 1 and the deprotonated ligands in 2 and 3 act as bidentate NS donors. The singly deprotonated ligand in 2 acts as a bridging agent between two metal centers in the binuclear PdII-complex.  相似文献   

16.
The reaction of N-(5-methyl-2-thienylmethylidene)-2-thiolethylamine (1) with Fe2(CO)9 in refluxing acetonitrile yielded di-(μ3-thia)nonacarbonyltriiron (2), μ-[N-(5-methyl-2-thienylmethyl)-η11(N);η11(S)-2-thiolatoethylamido]hexacarbonyldiiron (3), and N-(5-methyl-2-thienylmethylidene)amine (4). If the reaction was carried out at 45 °C, di-μ-[N-(5-methyl-2-thienylmethylidene)-η1(N);η1(S)-2-thiolethylamino]-μ-carbonyl-tetracarbonyldiiron (5) and trace amount of 4 were obtained. Stirring 5 in refluxing acetonitrile led to the thermal decomposition of 5, and ligand 1 was recovered quantitatively. However, in the presence of excess amount of Fe2(CO)9 in refluxing acetonitrile, complex 5 was converted into 2-4. On the other hand, the reaction of N-(6-methyl-2-pyridylmethylidene)-2-thiolethylamine (6) with Fe2(CO)9 in refluxing acetonitrile produced 2, μ-[N-(6-methyl-2-pyridylmethyl)-η1 (Npy);η11(N); η11(S)-2-thiolatoethylamido]pentacarbonyldiiron (7), and μ-[N-(6-methyl-2-pyridylmethylidene)-η2(C,N);η11(S)-2- thiolethylamino]hexacarbonyldiiron (8). Reactions of both complex 7 and 8 with NOBF4 gave μ-[(6-methyl-2-pyridylmethyl)-η1(Npy);η11(N);η11(S)-2-thiolatoethylamido](acetonitrile)tricarbonylnitrosyldiiron (9). These reaction products were well characterized spectrally. The molecular structures of complexes 3, 7-9 have been determined by means of X-ray diffraction. Intramolecular 1,5-hydrogen shift from the thiol to the methine carbon was observed in complexes 3, 7, and 9.  相似文献   

17.
Cyclopalladated complexes with the Schiff base N-(benzoyl)-N-(2,4-dimethoxybenzylidene)hydrazine (H2L, 1) have been described. The reaction of 1 with Li2[PdCl4] in methanol yields the complex [Pd(HL)Cl] (2). [Pd(HL)(CH3CN)Cl] (3) has been prepared by dissolving 2 in acetonitrile. In methanol-acetonitrile mixture, treatment of 2 with two mole equivalents of PPh3 produces [PdL(PPh3)] (4) and that with one mole equivalent of PPh3 produces [Pd(HL)(PPh3)Cl] (5). Crystallization of 2 from dmso-d6 results into isolation of [Pd(HL)((CD3)2SO)Cl] (6). In 2, the monoanionic ligand (HL) is C,N,O-donor and the Cl-atom is trans to the azomethine N-atom. In 3, 5 and 6, HL is C,N-donor and the Cl-atom is trans to the metallated C-atom. The remaining fourth coordination site is occupied by the N-atom of CH3CN, the P-atom of PPh3 and the S-atom of (CD3)2SO in 3, 5 and 6, respectively. Thus on dissolution in acetonitrile and dmso and in reaction with stoichiometric PPh3 the incoming ligand imposes a rearrangement of the coordinating atoms on the palladium centre. On the other hand, in presence of excess PPh3 deprotonation of the amide functionality in 2 occurs and the Cl-atom is replaced by the P-atom of PPh3 to form 4. Here the dianionic ligand (L2−) remains C,N,O-donor as in 2. The compounds have been characterized with the help of elemental analysis (C, H, N), infrared, 1H NMR and electronic absorption spectroscopy. Molecular structures of 3, 4, and 6 have been determined by X-ray crystallography.  相似文献   

18.
[2 + 3] Cycloaddition reactions of the di(azido)-PdII complex trans-[Pd(N3)2(PPh3)2] (1) with an organonitrile RCN (2), under heating for 12 h, give the bis(tetrazolato) complexes trans-[Pd(N4CR)2(PPh3)2] (3) [R = Me (3a), Ph (3b), 4-ClC6H4 (3c), 4-FC6H4 (3d), 2-NC5H4 (3e), 3-NC5H4 (3f), 4-NC5H4 (3g)]. The reaction of trans-[Pd(N3)2(PPh3)2] (1) with propionitrile (2h) also affords, apart from trans-[Pd(N4CEt)2(PPh3)2] (3h), the unexpected mixed cyano-tetrazolato complex trans-[Pd(CN)(N4CEt)(PPh3)2] (3h′) which is derived from the reaction of the bis(tetrazolato) 3h with propionitrile, with concomitant formation of 5-ethyl-1H-tetrazole, via a suggested unusual oxidative addition of the nitrile to PdII. The [2 + 3] cycloadditions of [Pd(N3)2(PTA)2] (4) (PTA = 1,3,5-triaza-7-phosphaadamantane) with RCN (2), under heating for 12 h, give the bis(tetrazolato) complexes trans-[Pd(N4CR)2(PTA)2] (5) [R = Ph (5a), 2-NC5H4 (5b), 3-NC5H4 (5c), 4-NC5H4 (5d)]. All these reactions are greatly accelerated by microwave irradiation (1 h, 125 °C, 300 W). Taking advantage of the hydro-solubility of PTA, a simple liberation of 5-phenyl-1H-tetrazole from the coordination sphere of trans-[Pd(N4CPh)2(PTA)2] (5a) was achieved. The complexes were characterized by IR, 1H, 13C{1H} and 31P{1H} NMR spectroscopies, ESI+-MS, elemental analyses and, for 3b, also by X-ray structure analysis. Weak agostic interactions between the CH groups of the triphenylphosphines and the palladium(II) centre were found.  相似文献   

19.
The syntheses of four compounds, obtained by the reaction of methylpyruvate thiosemicarbazone (Hmpt) and its methyl (Me-Hmpt) and allyl (Allyl-Hmpt) derivatives with bis(triphenylphosphine)copper(I) acetate, are reported. The compounds [Cu(PPh3)2(ptc)(Hptc)]·H2O (1), [Cu(PPh3)2(Me-ptc)] (2), [Cu2(PPh3)2μ-S(Me-pt)μ-S(Me-ptc)]·H2O (3) and [Cu(PPh3)2(Allyl-ptc)] (4) [H2pt = pyruvic acid thiosemicarbazone and Hptc = cyclized pyruvic acid thiosemicarbazone, Me = methyl and Allyl are radical substituents on the amino nitrogen] were characterized by elemental analysis, IR, 1H NMR, and by X-ray crystallography. Compound 3 was also studied by EPR because of the presence in the compound of two copper atoms in two different oxidation states. During the complexation reaction, the thiosemicarbazone ligands tend to undergo a cyclization reaction that leads to the formation of a six-member heterocyclic ring. All four compounds present the [Cu(PPh3)2]+ fragment and constant but different coordination situations. Compound 1 contains two cyclic ligand molecules, one protonated and the other deprotonated, bound as monodentate through the sulfur. Compounds 2 and 4 present a single deprotonated cyclic SN bidentate ligand molecule, while compound 3 contains copper(I) and copper(II), and two ligand molecules, one of which is linear and behaves as SNO tridentate and the other is cyclic and behaves as bridging μSN.  相似文献   

20.
The complexes trans-[RuCl2(L){(S,S)-iPr-pybox}] ((S,S)-iPr-pybox = 2,6-bis[4′-(S)-isopropyloxazolin-2′-yl]pyridine, L = PMe3 (1), P(OMe)3 (2), PPh2(CH2CHCH2) (3), CNBn (5), CNCy (6) and MeCN (7)) have been synthesized by substitution of ethylene on the precursor trans-[RuCl2(η2-C2H4){(S,S)-iPr-pybox}]. This complex also reacts with cyclooctadiene (cod) or norbornadiene (nbd) and NaPF6, in refluxing methanol, giving the coordination compounds [RuCl(η4-cod){(S,S)-iPr-pybox}][PF6] (8) and [RuCl(η4-nbd){(S,S)-iPr-pybox}][PF6] (9). The structures of complexes [RuCl(CO)(PPh3)(H-pybox)][BF4] (H-pybox = 2,6-bis(dihydrooxazolin-2′-yl)pyridine) (4), 6 and 8, have been resolved by X-ray diffraction methods. The catalytic activity of the new complexes in transfer hydrogenation of acetophenone has also been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号