首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of rhenium hydrides ReHX(CO)(NO)(PR3)2 1 (X=H, R=Me (a), Et (b), iPr (c); X=Cl, R=Me (d)) with a series of proton donors (indole, phenols, fluorinated alcohols, trifluoroacetic acid) was studied by variable temperature IR spectroscopy. The conditions governing the hydrogen bonding ReHHX in solution and in the solid state (IR, X-ray) were elucidated. Spectroscopic and thermodynamic characteristics (−ΔH=2.3–6.1 kcal mol−1) of these hydrogen bonded complexes were obtained. IR spectral evidence that hydrogen bonding with hydride atom precedes proton transfer and the dihydrogen complex formation was found. Hydrogen bonded complex of ReH2(CO)(NO)(PMe3)2 with indole (2a–indole) and organyloxy-complex ReH(OC6H4NO2)(CO)(NO)(PMe3)2 (5a) were characterized by single-crystal X-ray diffraction. A short NHHRe (1.79(5) Å) distance was found in the 2a–indole complex, where the indole molecule lies in the plane of the Re(NO)(CO) fragment (with dihedral angle between the planes 0.01°).  相似文献   

2.
3.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

4.
The three title cyanoruthenium complexes have been characterized by means of X-ray diffraction analysis, IR and NMR solution spectroscopies, as well as extended Hückel molecular orbital calculations examining the properties of the cyanide fragment changing with complexation and with the co-ligands Cp and PPh3. Explanations are given for crystallographic results of the C-N bond shortening upon complexation, the supershort (2.573 Å) bond length of N(H) N in the bridged complex, as well as the Ru-C-N and C-N-H-N-C bendings. Although the crystallographically found asymmetry of coordinated Cp is not significant, the MO calculations suggest a distorted endocyclic bond-length pattern indicative of the relative importance of σ and π bonding in the metalcyclopentadienyl interactions.  相似文献   

5.
Cyclohexane solutions of [W(Cp)(CO)3]2 and [Mo(Cp)(CO)3]2 exhibit weak bimodal emission spectra when excited With 354 nm picosecond pulses, but do not luminesce when pumped at 530 nm. Picosecond lifetimes characterize the short-wavelength, emission bands, which may originate from metal-cyclopentadienyl CT excited states.  相似文献   

6.
The d5 low-spin Tc(II) complex trichloro-nitrosyl-bis(dimethylphenyl-phosphine)technetium(II) was studied by EPR at 295 ≥ T ≥ 27.2 K. In the room-temperature spectrum well-resolved 99Tc hyperfine splitting is observed indicating a ground state for the unpaired electron which is well separated from other orbital states. At low temperatures the spectrum can be fitted by an axial spin Hamiltonian. The analysis of the 99Tc hyperfine splitting shows remarkable covalent interactions with the “in-plane” ligands. The 31P superhyperfine splitting observed was used to get information about the overall spin density distribution in the molecular orbital of the unpaired electron.  相似文献   

7.
Improved syntheses for the dimeric compounds [Pd2(μ-X)2(PBut3)2] (X = Br, I) have been developed and the X-ray crystal structure for the dimer with X = 1 is reported. The reactions of these dimers with CNR (R = 2,6-dimethylphenyl), H2 and a series of terminal and substituted alkynes are also reported. The dimer with X = Br is an initiator for the catalytic polymerisation of phenylacetylene. The product of the dimers with disubstituted alkynes results in the synthesis of trimeric species with formula [Pd3(μ-X){ν2-C4(CO2R)4}2][PBut3)Me]2 (X = Br, I; R = Me, Et). The X-ray crystal structure of one of these compounds (when R = Et and X = I) is presented, demonstrating that the palladium dimers assist the C---C coupling of the alkynes.  相似文献   

8.
A set of phosphine complexes of the type W(CO)3(PX3)2(CH2CH2) (X=H, CH3, F, Cl, Br, and I) were investigated by density functional theory method (BP86) to examine the effect of the substituent X on the orientation of C-C vector of the ethylene ligand with respect to one of the metal-ligand bonds as well as the donation and the backdonation in the bonding ligands of phosphine and ethylene. When X=CH3, H, F, and Cl, the ethylene C-C vector prefers to be coplanar with metal-phosphine bonds, while for the ethylene complexes containing PBr3 and PI3 ligands, the structural preference is coplanarity of the ethylene and the metal-carbonyl bonds. The molecular orbital calculations and natural bond orbital analysis were used to examine the structural consequences derived from these complexes. It can be concluded that the structural preferences in the complexes have a clear relation to electronic effects of phosphine ligands. Our calculations for halide phosphine complexes, particularly for PBr3 and PI3, allow us to conclude that in addition to electronic effects, steric factors can also affect the orientation of the ethylene ligand in complexes.  相似文献   

9.
The bright red title compound 1 was synthesized from (2-lithiophenyl)diphenylamine and bis(pentafluorophenyl)boron chloride. Its reactions with small acids like H2O and HCl proceeded easily giving zwitterionic compounds. For 1 and its water adduct 2 the crystal structures were determined, the latter featuring an ammonium borate structure containing a short intramolecular hydrogen bond bridge. Treatment of 1 with Jutzi's acid, [H(OEt2)2][B(C6F5)4], did not result in protonation of the nitrogen, but reaction of 1 with LiH in the presence of 12-crown-4, led to the isolation of the aminoborate [1-(Ph2N)-2-{B(H)(C6F5)2}C6H4][Li(12-crown-4)] (3). Borohydride 3 reacted with Jutzi's acid to regenerate 1 and liberate hydrogen.  相似文献   

10.
The photochemical reaction of W(CO)6 with diethylsilane has been used to generate new tungsten-silicon compounds varying in stability. The initially formed η2-silane intermediate complex [W(CO)52-H-SiHEt2)], characterized by two equal-intensity doublets with 2JH-H = 10 Hz at δ = 5.10 (1JSi-H = 217 Hz) and δ = −8.05 (1JW-H = 38 Hz, 1JSi-H = 93 Hz), was detected by the 1H NMR spectroscopy (methylcyclohexane-d14, −10 °C). The η2-silane complex was converted in the dark to give more stable species. One of them was characterized by two equal-intensity proton signals observed as doublets with 2JH-H = 5.2 Hz at δ = −8.25 and −10.39 ppm. The singlet proton resonance at δ = −9.31 flanked by 29Si and 183W satellites (1JSi-H = 43 Hz, 2JSi-H = 34 Hz, 1JW-H = 40 Hz) was assigned to the agostic proton of the W(η2-H-SiEt2) group in the most stable compound isolated from the photochemical reaction products in crystalline form. The molecular structure of the bis{(μ-η2-hydridodiethylsilyl)tetracarbonyltungsten(I)} complex [{W(μ-η2-H-SiEt2)(CO)4}2] was established by single-crystal X-ray diffraction studies. The tungsten hydride observed in the 1H NMR spectrum at δ = −9.31 was located in the structure at a chemically reasonable position between the W and Si atoms of the W-Si bond of the bridging silyl ligand. The reactivity of photochemically generated W-Si compounds towards norbornene, cyclopentene, diphenylacetylene, acetone, and water was studied. As was observed by IR and NMR spectroscopy, the η2-silane ligand in the complex [W(CO)52-H-SiHEt2)] is very easily replaced by an η2-olefin or η2-alkyne ligand.  相似文献   

11.
The variable temperature 13C NMR spectra of H2Os3(CO)10 and H2Os3(CO)10L (L P(C6H5)3, P(O-i_C3H7)s3) and P(i_C3H7)3) have been recorded and the results interpreted in terms of a localized exchange process involving concerted motion of the hydride and the carbonyl ligands. Taken along with previously reported variable temperature 1H NMR data the results provide a complete picture of the ligand dynamics in these systems.  相似文献   

12.
A novel phosphite-based hetero-polyoxomolybdate, [Mo6(PO3)(HPO3)3O18]9−, has been isolated and structurally characterized. The most striking feature of this polyanion is the presence of peripheral phosphite groups linked to the MoO6 octahedra. In the solid state, this cluster shows strong hydrogen bonding interactions that apparently play a key role in its stabilization and isolation from solution.  相似文献   

13.
The [Cp2HfH2Al(H)Br(OBu)]2 complex (1) was prepared by the reaction of Cp2HfBr2 with AlH3 in THF and characterized by X-ray crystallography. The formation of dinuclear complex 1 proceeds through the intermediate formation (as a result of cleavage of THF molecules) of the >Al(μ-OBu)2Al< fragment. The latter is linked to two hafnocene dihydride molecules by the Hf-H-Al hydrogen bridges. The Hf atom in complex 1 has a 16-electron environment.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2082–2085, October, 2004.  相似文献   

14.
Here we report the synthesis and characterization by X-ray diffraction, FTIR, UV-Vis and EPR spectroscopies, and the magnetic measurements of two new compounds: [Mn(NCS)2(bpe)2(H2O)2] (1) and [Fe(NCS)2(bpe)2(H2O)2] (2) (bpe = 1,2-bis(4-pyridyl)ethylene). Single-crystal structure analyses reveals discrete octahedral metal units that are assembled into 2D sheets through O-Hw?N(bpe) and O-Hw?S(thiocyanate) hydrogen bonds. The intermetallic M?M distances are 6.90 and 6.87 Å for 1 and 2, respectively. Supramolecular architectures are obtained by connections through H-bonds. Slight interactions are observed for compound 2.  相似文献   

15.
Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (Y=H (1a), Me (1b), MeO (1c)) can be prepared either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (Y=H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCl2 (Y=H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a-c with SO2Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2TeI2 (Y=H (4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of 1a-c with KI, or alternatively, by the oxidative addition of iodine to 2a-c. The reaction of 2a-c with allyl bromide affords the diorganotellurium dibromides 1a-c, rather than the expected triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, 13C and 125Te NMR spectroscopy (solution and solid-state) and in case of 1c also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.  相似文献   

16.
Under mild hydrothermal conditions UO2(NO3)2·6H2O, Hg2(NO3)2·2H2O, and Na2HAsO4·7H2O react to form [Hg5O2(OH)4][(UO2)2(AsO4)2] (HgUAs-1). Single crystal X-ray diffraction experiments reveal that HgUAs-1 possesses a pseudo-layered structure consisting of two types of layers: and . The layers are complex, and contain three crystallographically unique Hg centers. The coordination environments and bond-valence sum calculations indicate that the Hg centers are divalent. The layers belong to the Johannite topological family. The and layers are linked to each other through μ2-O bridges that include Hg?O=U=O interactions.  相似文献   

17.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

18.
X-ray crystallographic analyses of H2Os3(CO)10, H(SC2H5)Os3(CO)10 and (OCH3)2Os3(CO)10 are reported. Although hydrogen atom positions have not been located, the essential isostructural nature of the three commplexes establishes the hydride ligands as bridging two metal atoms, separated by 2.670 Å, with a formal bond order of two; the bridging hydrido- and thiolato-ligands span an osmium---osmium bond of length 2.863 Å and formal bond order one; the two μ-methoxy ligands bridge two metal atoms separated by 3.078 Å which, by simple 18 electron rule counting, has a metal---metal bond order of zero. Some general comments are made on the structures of polynuclear transition metal carbonyls.  相似文献   

19.
Structures of non metal-metal bonded phosphido-bridged heterobimetallic complexes, including CpFe(CO)2(μ-PPh2)W(CO)5 (1-W) and metal-metal bonded CpFe(CO)(μ-CO)(μ-PPh2)W(CO)4 (2), were determined by a single crystal X-ray diffraction study. In 1-W, the long distance between Fe and W indicates no metal-metal bond to exist. In 2, a Fe---W bond with bond length 2.851 Å and a semibridging carbonyl with W---C---O angle 153° were observed. Mössbauer spectra of 1-W and 2 were taken at 77 K. Isomer shifts of 1-W and 2 were − 0.0203 mm s−1 and 0. 1917 mm s−1 respectively.  相似文献   

20.
[Ni(H2O)6][Cu3Cl8(H2O)2] · (15-crown-5)2 · 2H2O can be conveniently prepared by the interaction of NiCl2 · 6H2O, CuCl2 · 2H2O and 15-crown-5 in water. The X-ray crystal structure reveals an ionic complex involved in a hydrogen-bonded two dimensional network with the [Ni(H2O)6]2+ and [Cu3Cl8(H2O)2]2− ions sandwiched between the 15-crown-5 macrocycles. The magnetic susceptibility data (4–300 K) and magnetisation isotherms (2–5.5 K; 0–5 T) are best interpreted in terms of intra-trimer ferromagnetic coupling within the [Cu3Cl8(H2O)2]2− moieties, with J ∼ 6 cm−1, and antiferromagnetic coupling between the trimers, the latter mediated by H-bonding pathways. Comparisons are made to other reported quaternary ammonium salts of [Cu3Cl8]2− and [Cu3Cl12]6−, most of which display structures that involve close stacking of such Cu(II) trimers, rather than being of the present isolated, albeit H-bonded, types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号