首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new ferrocenyl substituted ditertiary phosphine {FcCH2N(CH2PPh2)CH2}2 [Fc = (η5-C5H4)Fe(η5-C5H5)] (1) was prepared, in 72% yield, by Mannich based condensation of the known bis secondary amine {FcCH2N(H)CH2}2 with 2 equiv. of Ph2PCH2OH in CH3OH. Phosphine 1 readily coordinates to various transition-metal centres including Mo0, RuII, RhI, PdII, PtII and AuI to afford the heterometallic complexes {RuCl2(p-cym)}2(1) (2), (AuCl)2(1) (3), cis-PtCl2(1) (4), cis-PdCl2(1) (5), cis-Mo(CO)4(1) (6), trans,trans-{Pd(CH3)Cl(1)}2 (7) and trans,trans-{Rh(CO)Cl(1)}2 (8). In complexes 2, 3, 7 and 8 ligand 1 displays a P,P′-bridging mode whilst for 4-6 a P,P′-chelating mode is observed. All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 1, 2 · 2CH2Cl2, 3 · CH2Cl2, 4 · CH2Cl2, 6 · 0.5CHCl3 and 8 have been elucidated by single crystal X-ray crystallography. Electrochemical measurements have been undertaken, and their redox chemistry discussed, on both noncomplexed ligand 1 and representative compounds containing this new ditertiary phosphine.  相似文献   

2.
A new series of neutral organometallic building blocks based on piano-stool ruthenium(II) complexes, RuCl2(p-cymene)Ph2PCH2Y [Y = -NHC6H4(2-CO2H) (2a), -NHC6H4(3-CO2H) (2b), -NHC6H3(3-CO2H)(6-OCH3) (2c), -NHC6H4(4-CO2H) (2d), -NHC6H3(2-CO2H)(4-OH) (2e), -NHC6H3(3-OH)(4-CO2H) (2f), -NHC6H3(2-CO2H)(5-CO2H) (2g) and -OH (2h)], were synthesised in high yields (>88%) from {RuCl2(p-cymene)}2 and the appropriate phosphines 1a-1h. The new tertiary phosphine 1b was prepared by Mannich condensation of NH2C6H4(3-CO2H) with Ph2PCH2OH in MeOH. Solution NMR (31P{1H}, 1H), FT-IR and microanalytical data are in full agreement with the proposed structures. Single crystal X-ray studies confirm that, in each case, compounds 2a, 2b and 2d-2h have piano-stool arrangements with typical Ru-P, Ru-Cl and Ru-Ccentroid bond lengths. From our crystallographic studies, factors that influence the supramolecular assemblies of these ruthenium(II) complexes include: (i) the type of functional group present, (ii) the geometric disposition of the -N(H)CH2PPh2, -CO2H and -OH groups around the central benzene scaffold, and (iii) the solvents used in the recrystallisations. Hence in isomers 2a and 2b, molecules are associated into head-to-tail dimer pairs through classical intermolecular O-H?O hydrogen bonding. This feature is also observed in isomer 2d but dimer pairs are further associated to give a 1-D chain through assisted intermolecular N-H?Cl hydrogen bonding. The additional 4-hydroxo group in 2e promotes a ladder arrangement via intermolecular O-H?O and O-H?Cl hydrogen bonding. In contrast the isomeric compound 2f does not show head-to-tail O-H?O hydrogen bonding but instead O-H?Cl and N-H?O intermolecular hydrogen bonding is observed. Depending on the choice of solvent (MeOH or DMSO), 2g forms extended networks based on chains (2g · DMSO · 1.5MeOH) or tapes (2g · 3MeOH). In 2h, a single intramolecular O-H?Cl hydrogen bond is observed for each independent molecule. The X-ray structure of one representative tertiary phosphine, 1f, has also been determined.  相似文献   

3.
Novel phosphine oxides, (((3-methylpyridin-2-yl)amino)methyl)diphenylphosphine oxide (1) and diphenyl((pyrazin-2-ylamino)methyl)phosphine oxide (2), were synthesized and characterized. Phosphines ligands (3 and 4) were obtained by the reduction of 1 and 2 with AlH3, monitored by 31P NMR spectroscopy. Pd(II) complexes of 3 and 4 were synthesized and characterized (5 and 6). The catalytic activity of 5 and 6 was tested on the reaction of styrene with both activated and deactivated aryl bromides in air. The results of the catalytic experiments were discussed through DFT calculations.  相似文献   

4.
Cationic nickel(II) complexes containing chelating O,O′-donor maltolate or ethyl maltolate ligands in conjunction with bidentate bisphosphine ligands Ph2P(CH2) n PPh2 were prepared by a one-pot reaction starting from nickel(II) acetate, bisphosphine, maltol (or ethyl maltol), and trimethylamine, and isolated as their tetraphenylborate salts. An X-ray structure determination of [Ni(maltolate)(Ph2PCH2CH2PPh2)]BPh4 shows that the maltolate ligand binds asymmetrically to the (slightly distorted) square-planar nickel(II) center. The simplicity of the synthetic method was extended to the synthesis of the known platinum(II) maltolate complex [Pt(maltolate)(PPh3)2]BPh4 which was obtained in high purity.  相似文献   

5.
Seven novel complexes (C1–C7) were synthesized by the interaction between Cu(I) metal cation, L1, L2, L3, X and PPh3, where L1–L3 are derivatives of ((pyridine-2-ylmethylene)amino)phenol imine ligands and X = Cl, Br, I, NCS. All the complexes were characterized using infrared, 1H NMR and 31P NMR spectroscopies. The crystal structures of C1–C7 were also determined using single-crystal X-ray diffraction. The organization of the crystal structures and the intermolecular interactions are discussed. The supramolecular assemblies are driven by cooperative π…π interactions and hydrogen bonds, followed by CH…π linkages. The potential anticancer effect of C1–C7 was assessed for human glioblastoma cells using several anticancer experiments, which showed that these complexes have marked anticancer property against U87 cells. It was also found that the minimum and maximum anticancer effects are shown by C3- and C4-treated samples, respectively. Furthermore, theoretical approaches were used to investigate the nature of metal–ligand interactions which suggest a closed-shell and electrostatic character for Cu…N, Cu…P and Cu…X bonds.  相似文献   

6.
The new tripodal ligand tris(picolyl-2-carboxyamido-6-pyridyl) methanol (L1) has been synthesised via a Pd-catalysed amidocarbonylation reaction in good yield (64%). The ligand has been shown to readily form mononuclear complexes with both Fe(II) and Zn(II). Continuous Shape Mapping calculations have also been performed which confirm the ligands ability to enforce near-perfect trigonal prismatic co-ordination environments upon each of these metal ions.  相似文献   

7.
The syntheses, structures and spectroscopic properties of tricarbonylrhenium(I) complexes with N,N′-bis(2-bromo, 4-bromo, 4-chloro and 3-methoxybenzaldehyde)-1,2-diiminoethane Schiff base ligands have been investigated in this paper. Characterization of these complexes was carried out with FTIR, NMR, UV–Vis spectroscopy, elemental analysis and X-ray crystallography. The electrochemical behavior of the investigated complexes has been studied by cyclic voltammetry. The crystal structures of the 4-chloro, 4-bromo and 4-methoxy substituted complexes are stabilized by intermolecular C–H?Cl and C–H?O hydrogen bonds. The remarkable features of the 2-bromo, 4-bromo and 4-chloro substituted complexes are short intermolecular halogen–oxygen contacts. In the 4-bromo complex, short intermolecular Br?O and O?O contacts link neighboring molecules along the [1 0 0] direction, which are further stabilized by short intermolecular π?π interactions. In 2-bromo complex, intermolecular Br?O interactions link neighboring molecules into 1D extended chains along the [0 1 0] and [0 0 1] directions, forming a 2D network which is parallel to the bc-plane.  相似文献   

8.
The synthesis of a series of (fluoroalkyl)phosphine complexes of nickel is reported. Treatment of (cod)2Ni with dfepe (dfepe=(C2F5)2PCH2CH2P(C2F5)2) yields (dfepe)Ni(cod) (1), which has been structurally characterized. Treatment of 1 with CO or bipy results in the formation of (dfepe)Ni(CO)2 (2) and (dfepe)Ni(bipy) (3), respectively. Addition of excess dfepe to 1 results in incomplete cod displacement to form (dfepe)2Ni (4). The homoleptic complex 4 may be independently prepared in high yield by reduction of (acac)2Ni with (iBu)3Al in the presence of butadiene and excess dfepe. Solvation of (dfepe)Ni(cod) in acetonitrile gives a new complex tentatively identified as (dfepe)Ni(MeCN)2 (6), whereas dissolution of (dfepe)2Ni in acetonitrile leads to a mixture of 6 and the partial displacement product (dfepe)(η1-dfepe)Ni(MeCN) (5). In contrast to (R3P)4Ni(0) phosphine and phosphite complexes, which undergo protonation by strong anhydrous acids such as HCl, H2SO4 and CF3CO2H to give (R3P)4Ni(H)+ products, Treatment of (dfepe)2Ni with neat CF3CO2H or excess HOTf in dichloromethane gave no spectroscopic evidence for (dfepe)2Ni(H)+. Exposure for extended periods leads to dfepe loss and decomposition to Ni(II) products. The synthesis of the first cobalt complex of dfepe, (dfepe)Co(CO)2H, is also reported.  相似文献   

9.
New Mo(II) complexes with 2,2′-dipyridylamine (L1), [Mo(CH3CN)(η3-C3H5)(CO)2(L1)]OTf (C1a) and [{MoBr(η3-C3H5)(CO)2(L1)}2(4,4′-bipy)](PF6)2 (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(η3-C3H5)(CO)2(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(η3-C3H5)(CO)2(L3)] (C3), were prepared and characterized by FTIR and 1H and 13C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a κ2-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(η3-C3H5)(CO)2(L3)] with L3 acting as a κ2-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations.The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.  相似文献   

10.
Novel triphenyl phosphine ligands bearing pyrazole or 2-aminopyrimidine groups in the ortho or meta position of one or three of the phenyl rings were obtained starting from the corresponding acyl derivatives Ph2P(o-C6H4-COCH3), Ph2P(m-C6H4-COCH3), or P(m-C6H4-COCH3)3. Conversion of the acyl groups into 3-dimethylamino-2-propen-1-onyl units was achieved by reaction with HC(OMe)2NMe2 which underwent ring closing with hydrazine or guanidine to yield the desired heterocycles. Two palladium complexes were synthesized using the coordinatively labile precursor (PhCN)2PdCl2, one of them could be characterized by X-ray structure analysis.  相似文献   

11.
A new hypercoordinated organogermanium compound, trichlorogermyl[tris(2-methoxyphenyl)]methane (4) was prepared, and its tricapped tetrahedral structure was confirmed by X-ray crystallographic analysis. All interatomic oxygen?germanium distances are shorter than the sum of van der Waals radii of O and Ge (3.62 Å).  相似文献   

12.
13.
Direct template macrocyclization of the three dimethylglyoxime molecules on the iron(II) ion and the capping of nonmacrocyclic K3CoDm3 tris-dimethylglyoximate with triethylantimony(V) derivatives led to the formation of triethylantimony-capped iron(II) and cobalt(III) clathrochelates. The complexes obtained have been characterized using elemental analysis, MALDI-TOF mass, IR, UV–Vis, 57Fe Mössbauer and 1H and 13C NMR spectroscopies, and X-ray crystallography. The influence of the nature of an encapsulated metal ion, the capping groups and the chelate fragments on a clathrochelate framework geometry is discussed. The cyclic voltammograms show oxidation and reduction waves assignable to Fe2+/3+ and Co2+/3+ couples of the encapsulated metal ion.  相似文献   

14.
A series of five gold(I) halide complexes with the two isomeric methoxy-substituted triarylphosphines, tris(2-methoxyphenyl)phosphine [P(oanis)3], [AuP(oanis)3X] [for X = Cl, (1); X = Br, (2) and X = I, (3)] and tris(4-methoxyphenyl)phosphine [P(panis)3], [AuP(panis)3X] [for X = Br (4) and X = I (5)] have been synthesized and characterized by single crystal X-ray diffraction and solution 31P{1H} NMR spectroscopy. The structure determinations confirm the expected presence of linear two-coordination about the gold centres in all five complexes with bond distance and angle data typical of this type of compound [Au–P, 2.239(2)–2.259(3) Å; Au–Cl, 2.294(2) Å; Au–Br, 2.385(2)–2.402(2) Å; Au–I, 2.546(1)–2.554(1) Å; P–Au–X; 175.3(1)–180°]. All analogues except the iodo complex 5 crystallize with one complex molecule in the crystallographic asymmetric unit. The bromo and iodo complexes 2 and 3 constitute a trigonal isomorphous set while the bromo complex 4 is also isomorphous with the previously determined chloro complex [AuP(panis)3Cl]. The 2-methoxy analogues are stabilized by significant methoxy-O?Au interactions.  相似文献   

15.
Copper(I) complexes including diimine ligands of the bicinchoninic acid (BCA) and bathocuproinedisulfonic acid (BCS) families and water-soluble phosphines have been synthetized, characterized and investigated for their in vitro anticancer potential against human tumor cell lines representing examples of lung, breast, pancreatic and colon cancers and melanoma. All copper complexes exhibited moderate to high cytotoxic activity and the ability to overcome cisplatin resistance. Remarkably, growth-inhibitory effects evaluated in human non-transformed cells revealed a preferential cytotoxicity versus neoplastic cells. The remarkable cytotoxic effect towards BxPC3 pancreatic cancer cells, notoriously poor sensitive to cisplatin, was not related to a DNA or proteasome damage.  相似文献   

16.
This work is focused on the synthesis of innovative hybrids made by linking gold nanoparticles to protected organometallic Pd(II) thiolate. The organometallic protected Pd(II) thiolate, i.e. trans-thioacetate-ethynylphenyl-bis(tributylphosphine)palladium(II) has been synthesized, in situ deprotected and linked to Au nanoparticles. In this way new hybrid, with a direct link between Pd(II) and Au nanoparticles through a single S bridge, has been isolated. The combination of the organometallic Pd(II) thiol with gold nanoparticles allows the enhancement and tailoring of electronic and optical properties of the new organic-inorganic nano-compound. Single-crystal gold nanoparticles, uniform in shape and size were obtained by applying a modified two-phase method (improved Brust-Schiffrin reaction). In addition, the chemical environment of the Au nanoparticles was investigated and a covalent bonding between Au nanoparticles and the organometallic thiols was observed.  相似文献   

17.
The reactions of PdCI2(L-L) [L-L = Ph2PCH2PPh2(dppm), Ph2PCH2CH2PPh2(dppe) and Ph2PCH2CH2CH2PPh2(dppp)] with equivalent amount of (Ph2P(S)NHP(S)Ph2)(dppaS2) gave the complexes [Pd(L-L)(dppaS2-H)]ClO4 [L-L = dppm (1), dppe (2), dppp (3)]. The different synthetic route was used for complex 2 by using of Pd(dppe)Cl2 and K[N(PSPh2)2] as starting materials (2a). All of these complexes have been characterized 31P{1H} NMR, IR and elemental analyses. The complexes 2, 2a and 3 were crystallographically characterized. The coordination geometry around the Pd atoms in these complexes distorted square planar. Six membered dppaS2-H rings are twist boat conformations in three complexes.  相似文献   

18.
19.
New ionic complexes [ML2(MeCN)2]?2Otf (M = Co or Ni; L = 6-ferrocenyl-2,2′-bipyridyl) were synthesized and characterized by single-crystal X-ray diffraction. Cyclic voltammograms of the compounds [ML2(MeCN)2]?2Otf in CH2Cl2 show good cycle stability over 100 cycles in the quasi-reversible oxidation potential range (from −0.25 to 0.5 V).  相似文献   

20.
A series of mononuclear [M(EAr)2(dppe)] [M = Pd, Pt; E = Se, Te; Ar = phenyl, 2-thienyl; dppe = 1,2-bis(diphenylphosphino)ethane] complexes has been prepared in good yields by the reactions of [MCl2(dppe)] and corresponding ArE with a special emphasis on the aryltellurolato palladium and -platinum complexes for which the existing structural information is virtually non-existent. The complexes have crystallized in five isomorphic groups: (1) [Pd(SePh)2(dppe)] and [Pt(SePh)2(dppe)], (2) [Pd(TePh)2(dppe)] and [Pt(TePh)2(dppe)], (3) [Pd(SeTh)2(dppe)], (4) [Pt(SeTh)2(dppe)] and [Pd(TeTh)2(dppe)], and (5) [Pt(TePh)2(dppe)]. In addition, solvated [Pd(TePh)2(dppe)] · CH3OH and [Pd(TeTh)2(dppe)] · 1/2CH2Cl2 could be isolated and structurally characterized. The metal atom in each complex exhibits an approximate square-planar coordination. The Pd-Se, Pt-Se, Pd-Te, and Pt-Te bonds span a range of 2.4350(7)-2.4828(7) Å, 2.442(1)-2.511(1) Å, 2.5871(7)-2.6704(8) Å, and 2.6053(6)-2.6594(9) Å, respectively, and the respective Pd-P and Pt-P bond distances are 2.265(2)-2.295(2) Å and 2.247(2)-2.270(2) Å. The orientation of the arylchalcogenolato ligands with respect to the M(E2)(P2) plane has been found to depend on the E-M-E bond angle. The NMR spectroscopic information indicates the formation of only cis-[M(EAr)2(dppe)] complexes in solution. The trends in the 31P, 77Se, 125Te, and 195Pt chemical shifts expectedly depend on the nature of metal, chalcogen, and aryl group. Each trend can be considered independently of other factors. The 77Se or 125Te resonances appear as second-order multiplets in case of palladium and platinum complexes, respectively. Spectral simulation has yielded all relevant coupling constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号