首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new ferrocenyl substituted ditertiary phosphine {FcCH2N(CH2PPh2)CH2}2 [Fc = (η5-C5H4)Fe(η5-C5H5)] (1) was prepared, in 72% yield, by Mannich based condensation of the known bis secondary amine {FcCH2N(H)CH2}2 with 2 equiv. of Ph2PCH2OH in CH3OH. Phosphine 1 readily coordinates to various transition-metal centres including Mo0, RuII, RhI, PdII, PtII and AuI to afford the heterometallic complexes {RuCl2(p-cym)}2(1) (2), (AuCl)2(1) (3), cis-PtCl2(1) (4), cis-PdCl2(1) (5), cis-Mo(CO)4(1) (6), trans,trans-{Pd(CH3)Cl(1)}2 (7) and trans,trans-{Rh(CO)Cl(1)}2 (8). In complexes 2, 3, 7 and 8 ligand 1 displays a P,P′-bridging mode whilst for 4-6 a P,P′-chelating mode is observed. All new compounds have been fully characterised by spectroscopic and analytical methods. Furthermore the structures of 1, 2 · 2CH2Cl2, 3 · CH2Cl2, 4 · CH2Cl2, 6 · 0.5CHCl3 and 8 have been elucidated by single crystal X-ray crystallography. Electrochemical measurements have been undertaken, and their redox chemistry discussed, on both noncomplexed ligand 1 and representative compounds containing this new ditertiary phosphine.  相似文献   

2.
Reaction of the twisted pyridyl dithioether ligand bis(4-pyridylthio)methane (4bpytm) with silver(I) salts afforded four complexes with 1:1 stoichiometries, namely [Ag(4bpytm)](NO3) (1), [Ag(4bpytm)](ClO4) (2) and [Ag(4bpytm)](ClO4) ½CH2Cl2 ½dmf (2·Solv), [Ag(CH3COO)(4bpytm)]·H2O (3) and [Ag(CF3COO)(4bpytm)] (4). X-ray structural analysis of these complexes showed that one-dimensional structures are obtained for 1, 2·Solv and 4 whereas a two-dimensional network is formed in 3. The ligand 4bpytm acts as an N,N′-bis(monodentate) bridging system in all cases except in 3, where an unprecedented coordination mode is obtained with the ligand acting in a tridentate manner using its two pyridine nitrogen atoms and a sulfur atom. The coordination polymers are assembled through secondary contacts: Ag···Ag in 4, Ag···S in 1, 2·Solv and 4, Ag···O in 2·Solv, and hydrogen bonding interactions between crystallization water that join the polymeric layers in 3. All of these weak interactions link the low-dimensional complexes to give high-dimensional supramolecular structures and further stabilize the crystal structures in the solid state.  相似文献   

3.
The syntheses, structures and ligand conformations of the complexes trans-Cu(L1)2(ClO4)2, (L1 = N-(2-pyrimidinyl)-P,P-diphenyl-phosphinic amide), 1, [trans-Co(L1)2(CH3OH)2](ClO4)2·O(C2H5)2, 2, [trans-Co(L2)2(H2O)2](ClO4)2·2CH3OH, (L2 = N-(2-pyridinyl)-P,P-diphenyl-phosphinic amide), 3, [cis-Co(L2)2(NO3)](NO3), 4, and [Ag(L3)(NO3)(CH3CN)], (L3 = N-(6-methyl-2-pyridinyl)-P,P-diphenyl-phosphinic amide), 5, are reported. The L1 and L2 ligands in the monomeric complexes 1-4 chelate the metal centers through the pyrimidyl/pyridyl nitrogen atoms and the phosphinic amide oxygen atoms, whereas the L3 ligands in complex 5 bridge the metal centers, forming a 1-D zigzag chain. The chelating L2 ligands in complexes 3 and 4 adopt cis conformations and the bridging L3 ligand in complex 5 adopts a trans conformation, respectively.  相似文献   

4.
Three hydroxamic acid ligands (HL1 = acetohydroxamic acid; HL2 = benzohydroxamic acid; HL3 = N-phenylbenzohydroxamic acid), have been used to synthesize series of mono- or dialkyltin(IV) complexes, which include (i) the carboxyl acid hybrid five-coordinated dialkyltin complexes (C4H9)2SnL1L4 (1), [(CH3)2SnL2L5]·0.5C6H6 (2), (HL4 = acetic acid; HL5 = benzoic acid); (ii) the six-coordinated mono-n-butyltin complexes (C4H9)SnL1·Cl2·H2O (3), (C4H9)SnL2·Cl2·H2O (4), [(C4H9)SnL3·Cl2·H2O]·H2O (5), [(C4H9Sn)2(L3)2·Cl2·(OCH3)2] (6); and (iii) the alkali metal-mingled seven-coordinated mono-n-butyltin complexes [(C4H9Sn)3L2Na]+·Cl·(CH3CH2)2O (7), [(C4H9Sn)3L2K]+·Cl·CH2Cl2 (8). All complexes were characterized by elemental analyses, IR, 1H, 13C, 119Sn NMR and X-ray single crystal diffraction. In these complexes, hydroxamic acids present bidentate coordination modes with the carbonyl O atom and the hydroxyl O atom binding to tin center. In complexes 1-6, each tin atom is coordinated by one hydroxamic acid ligand. However, in complexes 7 and 8, tin atom is surrounded by three hydroxamic acid ligands, and all hydroxyl O atoms of the ligands also bind to the alkali metal center (Na or K). This kind of organotin(IV) framework containing one alkali metal is found for the first time. Furthermore, the supramolecular structures of 1, 3, 4 and 6 have been found to consist of 1D linear molecular chains formed by intermolecular N-H···X or C-H···X (X = O, N or Cl) hydrogen bonds. For complex 2, an interesting macrocyclic tetramer has been built by the intermolecular N-H···O hydrogen bonds. Fascinatingly, two unique symmetric dimeric structures are recognized in complexes 7 and 8, which is individually bridged by intermolecular N-H···Cl and N-H···O hydrogen bonds. In addition, for 8, the dimeric cycles have been further connected into a 1D supramolecular chain.  相似文献   

5.
The compounds [MoCl(NAr)2R] (R=CH2CMe2Ph (1) or CH2CMe3(2); Ar=2,6-Pri2C6H3) have been prepared from [MoCl2(NAr)2(dme)] (dme=1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl2(NAr)(NBut)(dme)] affords [MoCl(NAr)(NBut)(CH2CMe2Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)2(CH2CMe2Ph)] (4) (Cp=cyclopentadienyl), [MoInd(NAr)2(CH2CMe2Ph)] (5) (Ind=Indenyl), [Mo(OBut)(NAr)2(CH2CMe 2Ph)] (6), [MoMe(NAr)2(CH2CMe2Ph)] (7), [MoMe(PMe3)(NAr)2(CH2CMe 2Ph)] (8) (formed in the presence of PMe3) and [Mo(NHAr)(NAr)2(CH2CMe2P h)](9). In the latter case, a by-product {[Mo(NAr)2(CH2CMe2Ph) ]2(μ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with cis near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.  相似文献   

6.
Two diethyl phosphonated phosphine ligands of formula Ph2P(CH2)3PO3Et2 (ligand L) and Ph2P(4-C6H4PO3Et2) (ligand L′) were used to prepare different complexes of platinum(II) (1, cis-PtCl2L2; 2, trans-PtCl2L2·H2O; 3A and 3B, cis- and trans-PtCl2L′2) and palladium(II) (4, [PdCl2L]2; 5, trans-PdCl2L2·H2O; 6, trans-PdCl2L′2·CH2Cl2). The single-crystal X-ray structure analyses of complexes 1, 2, 4-6 indicate that complexation involved only the phosphine end, whereas the strong polarization of the PO bond was highlighted by the formation of hydrogen bonds with a water molecule in 2 and 5, and with a dichloromethane molecule in 6, with an exceptionally short CH?O hydrogen bond length (C?O separation 3.094(3) Å).  相似文献   

7.
The direct self-assembly of bis-(1-benzoimidazolymethylene)-(2,5-thiadiazoly)-disulfide (L) with CuSO4, Cu(NO3)2 and CuCl2 affords three novel supramolecular complexes: 1-D ladder-like chain complex {[Cu(SO4)(L)] · (CH3OH)}n (1), dimer complexes {[Cu(L)(CH3O)]2(NO3)2} · 2H2O (2) and [Cu(L)(Cl)(N3)]2 · 2CH3OH (3). The nature of the anions is the underlying reason behind the differences in the structures of this series of complexes. Furthermore, utilizing the coordinatively unsaturated complexes 2 and 3 as precursor complexes, two new derivative complexes [Cu(L)(NCS)(CH3O)]2 · 2CH3OH (2A) and [Cu(L)(ClO4)(N3)]2 · 2CH3OH (3A) are obtained by the addition and exchange reactions of complexes 2 and 3 with anions. X-ray crystallographic analysis shows that the two derivatives retain the skeletons of their precursor complexes, and the anions with the stronger coordination capacity only bind to the active position of precursor complexes. In addition, different from the obvious effects on the structures in the direct self-assembly of the metal and ligand, the change of counteranions has no great impact on the structures in the anion exchange reactions. We also study the catalytic activities of the complexes 2, 2A, 3, and 3A, which have similar skeletons, for the oxidative coupling polymerization of 2,6-dimethylphenol (DMP). And we find that the introductions of different coordination counterions produce significant impacts on the catalytic properties of these complexes.  相似文献   

8.
Five new silver(I) complexes [Ag2(L2)2](BF4)2·CH3CN·CH3OH (1), [Ag(L2)(CF3SO3)] (2), [Ag(L3)]ClO4·CH3OH (3), [Ag2(L3)2](CF3SO3)2·CH3CN·CH3OH·H2O (4) and [Ag(L3)]PF6·2CH3CN (5) [L2=1,3,5-tris(2-pyridylmethoxyl)benzene, L3=1,3,5-tris(3-pyridylmethoxyl)benzene] were synthesized and characterized by single crystal X-ray diffraction analyses. In complexes 1-5, ligands L2 and L3 show different conformations and act as three-connectors, while the Ag(I) atom serves as three-connecting node to result in the formation of 2D and 3D frameworks. Complexes 1 and 2 with different counteranions have similar 2D network structure with the same (4,82) topology. Complex 3 has a 3D structure with (10,3)-a topology while complexes 4 and 5 have the same 2D (6,3) topological structure. The results showed that the structure of organic ligands and counteranions play subtle but important role in determining the structure of the complexes. In addition, the photoluminescence and anion-exchange properties of the complexes were investigated in the solid state at room temperature.  相似文献   

9.
Chiral and racemic Salen-type Schiff-base ligands (H2L1, H2L2 and H2L3), condensed between D-(+)- and D,L-camphoric diamine (also known as (1R,3S)-1,2,2-trimethylcyclopentane-1,3-diamine) and 2-hydroxybenzaldehyde or 3,5-dibromo-2-hydroxybenzaldehyde with a 1:2 molar ratio, have been synthesized and characterized. A series of new nickel(II), palladium(II) and copper(II) complexes of these chiral and racemic ligands exhibiting different coordination number (4, 5 and 6) have been characterized with the formulae [NiL1]·CH3OH (3), [NiL1]·H2O (4), [NiL2] (5), [PdL2] (6), [Cu2(L2)2(H2O)] (7) and [NiL3(DMF)(H2O)] (8). Different solvent molecules in 3 and 4 (methanol and water molecules) as well as different apical ligands in 7 and 8 (water and DMF molecules) are involved in different O–H···O hydrogen bonding interactions to further stabilize the structures. UV–Vis (UV–Vis), circular dichroism (CD) spectra and thermogravimetric (TG) analyses for the metal complexes have also been carried out.  相似文献   

10.
Platinum complexes of the type [Pt(cis-1,4-DACH)(L)2]X, where cis-1,4-DACH = cis-1,4-diaminocyclohexane; L = adenine (ade) (1), hypoxanthine (hyp) (2), 9-methylguanine (9-megua) (3), cytosine (cyt) (4), or 1-methylcytosine (1-mecyt) (5); and X = SO4 or Cl2 groups, were synthesized and characterized by elemental analysis and by 1H, 13C, and 195Pt nuclear magnetic resonance spectroscopy. The crystals of [Pt(cis-1,4-DACH)(9-megua)2]SO4[9-megua-H]2SO4 (3) and [Pt(cis-1,4-DACH)(1-mecyt)2]Cl2 · 6H2O (5) were also subjected to single-crystal X-ray diffraction. The base/PtN4 coordination plane dihedral angles were 74.55° and 85.61° in complex 3 and 78.12° and 81.80° in complex 5. The platinum had distorted square planar geometry in both complexes; the two adjacent corners were occupied by the two nitrogen atoms of cis-1,4-DACH, and the other two corners were occupied by the two N7 atoms of 9-megua in complex 3 and the two N3 atoms of 1-mecyt in complex 5. The cis-1,4-DACH, which has a unique twist-boat configuration, formed a seven-member chelating ring with platinum, which led to considerable strain during bidentate cis-1,4-DACH binding. Cations of both complexes 3 and 5 adopted C2 molecular symmetry. These adducts were the models for the intrastand cross-links that were relevant to the binding of the Pt(II) antitumor drugs to DNA.  相似文献   

11.
Cationic methyl complex of rhodium(III), trans-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] (1) is prepared by interaction of trans-[Rh(Acac)(PPh3)2(CH3)I] with AgBPh4 in acetonitrile. Cationic methyl complexes of rhodium(III), cis-[Rh(Acac)(PPh3)2 (CH3)(CH3CN)][BPh4] (2) and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4] (3) (Acac, BA are acetylacetonate and benzoylacetonate, respectively), are obtained by CH3I oxidative addition to rhodium(I) complexes [Rh(Acac)(PPh3)2] and [Rh(BA)(PPh3)2] in acetonitrile in the presence of NaBPh4. Complexes 2 and 3 react readily with NH3 at room temperature to form cis-[Rh(Acac)(PPh3)2(CH3)(NH3)][BPh4] (4) and cis-[Rh(BA)(PPh3)2(CH3)(NH3)][BPh4] (5), respectively. Complexes 1-5 were characterized by elemental analysis, 1H and 31P{1H} NMR spectra. Complexes 1, 2, 3 and 4 were characterized by X-ray diffraction analysis. Complexes 2 and 3 in solutions (CH2Cl2, CHCl3) are presented as mixtures of cis-(PPh3)2 isomers involved into a fluxional process. Complex 2 on heating in acetonitrile is converted into trans-isomer 1. In parallel with that isomerization, reductive elimination of methyl group with formation of [CH3PPh3][BPh4] takes place. Replacement of CH3CN in complexes 1 and 2 by anion I yields in both cases the neutral complex trans-[Rh(Acac)(PPh3)2(CH3)I]. Strong trans influence of CH3 ligand manifests itself in the elongation (in solid) and labilization (in solution) of rhodium-acetonitrile nitrogen bond.  相似文献   

12.
The syntheses and structures of a series of metal complexes, namely Cu2Cl4(L1)(DMSO)2·2DMSO (L1 = N,N′-bis(2-pyridinyl)-1,4-benzenedicarboxamide), 1; {[Cu(L2)1.5(DMF)2][ClO4]2·3DMF} (L2 = N,N′-bis(3-pyridinyl)-1,4-benzenedicarboxamide), 2; {[Cd(NO3)2(L3)]·2DMF} (L3 = N,N′-bis-(2-pyrimidinyl)-1,4-benzenedicarboxamide), 3; {[HgBr2(L3)]·H2O}, 4, and {[Na(L3)2][Hg2X5]·2DMF} (X = Br, 5; I, 6) are reported. All the complexes have been characterized by elemental analysis, IR spectra and single crystal X-ray diffraction. Complex 1 is dinuclear and the molecules are interlinked through S?S interactions. In 2, the Cu(II) ions are linked through the L2 ligands to form 1-D ladder-like chains with 60-membered metallocycles, whereas complexes 3 and 4 form 1-D zigzag chains. In complexes 5 and 6, the Na(I) ions are linked by the L3 ligands to form 2-D layer structures in which the [Hg2X5] anions are in the cavities. The L2 ligand acts only as a bridging ligand, while L1 and L3 show both chelating and bridging bonding modes. The L1 ligand in 1 adopts a trans-anti conformation and the L2 ligand in 2 adopts both the cis-syn and trans-anti conformations, whereas the L3 ligands in 36 adopt the trans conformation.  相似文献   

13.
The reactions of the polydentate ligand 1,4-bis(4,5-dihydro-2-oxazolyl)benzene (L) with AgX (X = CH3COO, ClO4 and CF3SO3) afforded the complexes [Ag2(L)(CH3COO)2] (1), [Ag2(L)3(ClO4)2] (2), and [Ag(L)(CF3SO3)] (3), whereas the reaction of L with Ag2SO4 in MeOH/H2O system afforded {[Ag2(L)3(H2O)3][SO4] · 9H2O} (4). The EA and IR have been recorded and all the complexes have been structurally characterized by X-ray crystallography, confirming that complexes 14 are two-dimensional coordination polymeric frameworks. The bidentate L ligands in complexes 3 and 4 adopt both the syn and anti conformation and those in 1 and 2 adopt the anti conformation only. The anions CH3CO2 in complex 1 bridge the Ag(I) atoms in η1, η2, μ3-coordination mode forming a 1-D zig-zag –[Ag(CH3COO)]n– chains, while the anions ClO4, CF3SO3 and SO42− in complexes 24 are not coordinated to the Ag(I) atoms, but all of them play an important roles in linking cationic 2-D frameworks into 3-D supramolecular structures.  相似文献   

14.
An interesting series of nine new copper(II) complexes [Cu2L2(OAc)2]·H2O (1), [CuLNCS]·½H2O (2), [CuLNO3]·½H2O (3), [Cu(HL)Cl2]·H2O (4), [Cu2(HL)2(SO4)2]·4H2O (5), [CuLClO4]·½H2O (6), [CuLBr]·2H2O (7), [CuL2]·H2O (8) and [CuLN3]·CH3OH (9) of 2-benzoylpyridine-N(4)-phenyl semicarbazone (HL) have been synthesized and physico-chemically characterized. The tridentate character of the semicarbazone is inferred from IR spectra. Based on the EPR studies, spin Hamiltonian and bonding parameters have been calculated. The g values, calculated for all the complexes in frozen DMF, indicate the presence of the unpaired electron in the dx2-y2 orbital. The structure of the compound, [Cu2L2(OAc)2] (1a) has been resolved using single crystal X-ray diffraction studies. The crystal structure revealed monoclinic space group P21/n. The coordination geometry about the copper(II) in 1a is distorted square pyramidal with one pyridine nitrogen atom, the imino nitrogen, enolate oxygen and acetate oxygen in the basal plane, an acetate oxygen form adjacent moiety occupies the apical position, serving as a bridge to form a centrosymmetric dimeric structure.  相似文献   

15.
The reactions of trans-[MoO(ONOMe)Cl2] 1 (ONOMe = methylamino-N,N-bis(2-methylene-4,6-dimethylphenolate) dianion) and trans-[MoO(ONOtBu)Cl2] 2 (ONOtBu = methylamino-N,N-bis(2-methylene-4-methyl-6-tert-butylphenolate) dianion) with PhNCO afforded new imido molybdenum complexes trans-[Mo(NPh)(ONOMe)Cl2] 3 and trans-[Mo(NPh)(ONOtBu)Cl2] 4, respectively. As analogous oxotungsten starting materials did not show similar reactivity, corresponding imido tungsten complexes were prepared by the reaction between [W(NPh)Cl4] with aminobis(phenol)s. These reactions yielded cis- and trans-isomers of dichloro complexes [W(NPh)(ONOMe)Cl2] 5 and [W(NPh)(ONOtBu)Cl2] 6, respectively. The molecular structures of 4, cis-6 and trans-6 were verified by X-ray crystallography. Organosubstituted imido tungsten(VI) complex cis-[W(NPh)(ONOtBu)Me2] 7 was prepared by the transmetallation reaction of 6 (either cis or trans isomer) with methyl magnesium iodide.  相似文献   

16.
Four d10-metal coordination polymers based on the 2,4,5-tri(4-pyridyl)-imidazole ligand (Htpim), {[Zn2(Htpim)4Cl4] · 8H2O}n (1), {[Cd(tpim)2(H2O)2] · 4CH3OH}n (2), {[Cu2(Htpim)(PPh3)2I2] · CH3CN}n (3) and {[Ag(Htpim)](NO3) · CH2Cl2}n (4), have been synthesized and characterized by elemental analyses, IR, thermogravimetric and X-ray structural analyses. Both complexes 1 and 2 show one dimensional ribbon-like structures. Via intermolecular hydrogen bonds, a 2D supramolecular network and 3D framework are formed for 1 and 2, respectively. Complex 3 shows a 1D zigzag chain with a CuI2Cu rhomboid dimer. Complex 4 shows a 1D ladder-like polymer with two different metallacycles. The luminescent properties of all the complexes have been studied in the solid state.  相似文献   

17.
The P-functional organotin chloride Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] and trans-[(Et2S)2MCl2] (M=Pd, Pt) in molar ratio 1:1 to the zwitterionic complexes [(COD)M+(Cl)(PPh2CH2CH2SnCl4)] (1: M=Pd; 2: M=Pt) and trans-[(Et2S)2M+(Cl)(PPh2CH2CH2SnCl4)] (3: M=Pd; 4: M=Pt). The same reaction with [(COD)Pd(Cl)Me] yields under transfer of the methyl group from palladium to tin the complex [(COD)M+(Cl)(PPh2CH2CH2SnMeCl3)] (5) which changes in acetone into the dimeric adduct [Cl2Pd(PPh2CH2CH2SnMeCl2·2Me2CO)]2 (6). In molar ratio 2:1 Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] to the complexes [Cl2Pd(PPh2CH2CH2SnCl3)2] (7: M=Pd, mixture of cis/trans isomer; 8: M=Pt, cis isomer). In a subsequent reaction 8 is transformed in acetone into the 16-membered heterocyclic complex cis-[Cl2Pt(PPh2CH2CH2)2SnCl2]2 (9). trans-[(Et2S)2PtCl2] and Ph2PCH2CH2SnCl3 in molar ratio 1:2 yields the zwitterionic complex [(Et2S)M+(Cl)(PPh2CH2CH2SnCl3)(PPh2CH2CH2SnCl4)] (10). The results of crystal structure analyses of 1, 3, 6, 9 and of the adduct of the trans-isomer of 7 with acetone (7a) are reported. 31P- and 119Sn-NMR data of the complexes are discussed.  相似文献   

18.
Cyclodiphosphazanes having donor functionalities such as cis-[tBuNP(OR)]2 (R = C6H4OMe-o (2); R = CH2CH2OMe (3); R = CH2CH2SMe (4); R = CH2CH2NMe2 (5)) were obtained in good yield by reacting cis-[tBuNPCl]2 (1) with corresponding nucleophiles. The reactions of 2-5 with [RuCl26-cymene)]2, [MCl(COD)]2 (M = Rh, Ir), [PdCl2(PEt3)]2 and [MCl2(COD)] (M=Pd, Pt) result in the formation of exclusively monocoordinated mononuclear complexes of the type cis-[{tBuNP(OR)}2MLn-κP] irrespective of the reaction stoichiometry and the reaction conditions. In contrast, 2-5 react with [RhCl(CO)2]2, [PdCl(η3-C3H5)]2, CuX (X=Cl, Br, I) to give homobinuclear complexes. Interestingly, CuX produces both mono and binuclear complexes depending on the stoichiometry of the reactants and the reaction conditions. The mononuclear complexes on treatment with appropriate metal reagents furnish heterometallic complexes.  相似文献   

19.
The reaction between 1,2-bis[3-(3,5-dimethyl-1-pyrazolyl)-2-thiapropyl]benzene (bddf) and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) in a 1:1 M/L ratio in CH2Cl2 or acetonitrile solution, respectively, gave the complexes trans-[MCl2(bddf)] (M = Pd(II) (1), Pt(II) (4)), and in a 2:1 M/L ratio led to [M2Cl4(bddf)] (M = Pd(II) (2), Pt(II) (5)). Treatment of 1 and 4 with AgBF4 and NaBPh4, respectively, gave the compounds [Pd(bddf)](BF4)2 (3) and [Pt(bddf)](BPh4)2 (6). When complexes 3 and 6 were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1) for 24 h, analogous complexes to 1 and 4 with bromides instead of chlorides bonded to the metallic centre were obtained. These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 1H{195Pt}, 13C{1H}, 195Pt{1H} NMR, HSQC and NOESY spectroscopies. The X-ray crystal structure of the complex [Pd(bddf)](BF4)2 · H2O has been determined. The metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether groups.  相似文献   

20.
Four diorganotin(IV) complexes [(Me)2Sn(L1)(CH3COO)]·CH3CH2OH (1), [(Ph)2Sn(L1)(CH3COO)]·CH3CH2OH (2), [(Me)2Sn(L2)Cl] (3) and [(Ph)2Sn(L2)(CH3COO)] (4) where HL1 = 2-benzoylpyridine N(4)-phenylthiosemicarbazone and HL2 = 2-acetylpyrazine N(4)-phenylthiosemicarbazone have been synthesized and characterized by elemental analysis, IR MS, 1H NMR and single-crystal X-ray diffraction studies. Schiff bases in their deprotonated forms coordinate to tin(IV) via pyridine/pyrazine nitrogen atom and the nitrogen atom and sulfur atoms of the thiosemicarbazone moiety. The tin atom is seven-coordinated in 1, 2 and 4 containing one acetato group, respectively, and six-coordinated in 3 containing one chloride ion. Biological studies, carried out in vitro against selected bacteria and K562 leukaemia cells, respectively, have shown that different substituted groups attached at the thiosemicarbazone moieties and different diorganotin(IV) groups showed distinctive differences in the biological property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号