首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of [M2Cl2(μ-Cl)2(PMe2Ph)2] with mercapto-o-carboranes in the presence of pyridine afforded mono-nuclear complexes of composition, [MCl(SCb°R)(py)(PMe2Ph)] (M = Pd or Pt; Cb° = o-C2B10H10; R = H or Ph). The treatment of [PdCl2(PEt3)2] with PhCb°SH yielded trans-[Pd(SCb°Ph)2(PEt3)2] (4) which when left in solution in the presence of pyridine gave another substitution product, [Pd(SCb°Ph)2(py)(PEt3)] (5). The structures of [PdCl(SCb°Ph)(py)(PMe2Ph)] (1), [Pd(SCb°Ph)2(PEt3)2] (4) and [Pd(SCboPh)2(py)(PEt3)] (5) were established unambiguously by X-ray crystallography. The palladium atom in these complexes adopts a distorted square-planar configuration with neutral donor atoms occupying the trans positions. Thermolysis of [PdCl(SCb°)(py)(PMe2Ph)] (2) in TOPO (trioctylphosphine oxide) at 200 °C gave nanocrystals of TOPO capped Pd4S which were characterized by XRD pattern and SEM.  相似文献   

2.
A diselenide, (MeOOCCH2CH2Se)2 (1) has been prepared by esterification of (HOOCCH2CH2Se)2 in methanol. The reductive cleavage of Se-Se bond in 1 by NaBH4 in methanol generates MeOOCCH2CH2SeNa. The latter in different stoichiometries reacts with [M2Cl2(μ-Cl)2(PR3)2] to give a variety of products of compositions [M2Cl2(μ-SeCH2CH2COOMe)2(PR3)2] (2); [M2Cl2(μ-Cl)(μ-SeCH2CH2COOMe)(PR3)2] (3); [Pd2(SeCH2CH2COOMe)2(μ-SeCH2CH2COOMe)2(PR3)2] (4);[Pd3Cl2(μ-SeCH2CH2COOMe)4(PR3)2] (5). Treatment of complexes 2 with [M2Cl2(μ-Cl)2(PR3)2] affords complexes 3 in nearly quantitative yield. The formation of various products in these reactions is sensitive to stoichiometric ratio of reactants employed. This enables interconversion of various complexes by manipulating mole ratios of appropriate starting materials. A homoleptic palladium complex, [Pd(SeCH2CH2COOMe)2]6 (6) was isolated from a reaction between Na2PdCl4 and MeOOCCH2CH2SeNa. All these complexes have been characterized by elemental analysis, IR, UV-Vis and NMR (1H, 13C, 31P, 77Se, 195Pt) spectroscopy. Structures of trans-[Pd2Cl2(μ-SeCH2CH2COOMe)2(PPh3)2] (2d), [Pt2Cl2(μ-Cl)(μ-SeCH2CH2COOMe)(PnPr3)2] (3e), [Pd3Cl2(μ-SeCH2CH2COOMe)4(PnPr3)2] (5) and [Pd(SeCH2CH2COOMe)2]6 (6) have been established unambiguously by X-ray crystallography. In these complexes, there are bridging selenolate ligands with their uncoordinated ester groups. Compound 6 has a centrosymmetric Pd6Se12 hexagon in which every two palladium atoms are bridged by selenolate ligands. Thermal behaviour of some complexes has been investigated. Pyrolysis of compound 2b in tributylphosphate at 195 °C gave Pd17Se15 nanoparticles which were characterized by XRD and EDAX.  相似文献   

3.
New palladium(II) and platinum(II) complexes containing bis(2-pyridylmethyl)amine (bpma) and saccharinate (sac), [Pd(bpma)(sac)](sac)·2H2O (1), [Pt(bpma)(sac)](sac)·2H2O (2), [Pd(bpma)Cl](sac)·2H2O (3) and [Pt(bpma)(sac)]Cl·1.5H2O (4), were synthesized and characterized by elemental analysis, IR, NMR and TG-DTA. A single-crystal X-ray analysis of 3 and 4 proved a distorted square-planar geometry around the metal ions with one tridentate bpma ligand and one Cl or sac monoanion. The [Pd(bpma)Cl]+ ions in 3 form dimers by intermolecular N-H?Cl and Pd?Pd interactions. The cations reside in the centers of a hydrogen-bonded honeycomb network formed by the uncoordinated sac ions and the lattice water molecules, while the cations of 4 are connected by N-H?Cl and OW-H?O hydrogen bonds into one-dimensional chains. Cyclic planar tetrameric and trimeric water clusters were observed in 3 and 4, respectively. Cytotoxicity of 1-4 was tested against A549, C6 and CHO cells. Although 2 and 4 have no cytotoxicity, the best results were achieved for 1 and 3. In particular, the cyctotoxic activity of 3 is comparable to cisplatin.  相似文献   

4.
The new mononuclear palladium(II) and platinum(II) [M(p-SC6F4(CF3))2(dppe)] complexes M = Pd 1a, Pt 2a; [M(o-SC6H4(CF3))2(dppe)] M = Pd 1d, Pt 2d as well as the previously known [M(SC6F5)2(dppe)] M = Pd 1b, Pt 2b and [M(p-SC6HF4)2(dppe)] M = Pd 1c, Pt 2c, have been used as metalloligands for the preparation of the heteroleptic bimetallic complexes [M2(μ-SRf)2(dppe)2](SO3CF3)2 M = Pd, Rf = p-C6F4(CF3) 3a, C6F53b, p-C6HF43c, o-C6H4(CF3) 3d; M = Pt, Rf = p-C6F4(CF3) 4a, C6F54b, p-C6HF44c and o-C6H4(CF3) 4d. Variable temperature 19F NMR experiments show that the fluorothiolate bridged bimetallic compounds are fluxional in solution whereas mononuclear complexes are not. The solid state X-ray diffraction structures of [Pd(p-SC6HF4)2(dppe)] (1c), [Pt(SC6F5)2(dppe)] (2b) and [Pt(o-SC6H4(CF3))2(dppe)] (2d) show square-planar coordination around the metal centers. The solid state molecular structure of the compound [Pt2(μ-o-SC6H4(CF3))2(dppe)2](SO3CF3)2 (4d), exhibit a planar [Pt2(μ-S)2] ring with the sulfur substituents in an anti configuration.  相似文献   

5.
Reaction of 3-methoxycarbonyl-2-methyl- or 3-dimethoxyphosphoryl-2-methyl-substituted 4-oxo-4H-chromones 1 with N-methylhydrazine resulted in the formation of isomeric, highly substituted pyrazoles 4 (major products) and 5 (minor products). Intramolecular transesterification of 4 and 5 under basic conditions led, respectively, to tricyclic derivatives 7 and 8. The structures of pyrazoles 4a (dimethyl 2-methyl-4-oxo-4H-chromen-3-yl-phosphonate) and 4b (methyl 4-oxo-2-methyl-4H-chromene-3-carboxylate) were confirmed by X-ray crystallography. Pyrazoles 4a and 4b were used as ligands (L) in the formation of ML2Cl2 complexes with platinum(II) or palladium(II) metal ions (M). Potassium tetrachloroplatinate(II), used as the metal ion reagent, gave both trans-[Pt(4a)2Cl2] and cis-[Pt(4a)2Cl2], complexes with ligand 4a, and only cis-[Pt(4b)2Cl2] isomer with ligand 4b. Palladium complexes were obtained by the reaction of bis(benzonitrile)dichloropalladium(II) with the test ligands. trans-[Pd(4a)2Cl2] and trans-[Pd(4b)2Cl2] were the exclusive products of these reactions. The structures of all the complexes were confirmed by IR, 1H NMR and FAB MS spectral analysis, elemental analysis and Kurnakov tests.  相似文献   

6.
Complexes CuL3Cl2, PdL2Cl2 and PtL2Cl2, where L is a novel ligand from the series of 2-substituted 5-aminotetrazoles, namely 5-amino-2-tert-butyltetrazole (1), have been synthesized by the reaction of metal(II) chlorides with 1 and characterized by IR spectroscopy, thermal and X-ray analyses. The crystallographic structural analysis of these complexes revealed that 1 acts as a monodentate ligand coordinated to the metal via endocyclic N4 atom. Platinum complex demonstrates promising cytotoxicity against human cervical carcinoma cells with IC50 value average between those of cisplatin and carboplatin.  相似文献   

7.
8.
Novel bridged platinum(II) biscarbene complexes are reported: 1,1′-dimethyl-3,3′-methylene-4-diimidazolin-2,2′-diylidene platinum(II) (3) and 1,1′-dimethyl-3,3′-ethylene-4-diimidazolin-2,2′-diylidene platinum(II) complexes 4 are directly accessible in high yields starting from platinum halides. The one-pot synthesis obviates the need for multi-step reactions via metal precursors or free carbenes. An X-ray crystal structure of 1,1′-dimethyl-3,3′-methylene-4-diimidazolin-2,2′-diylidene platinum(II) dibromide (3b) confirmed the structural similarity to the known corresponding palladium complexes. Since free 1,1′-di-R-3,3′-methylene-4-diimidazolin-2,2′-diylidenes are only available in low yields this synthetic route provides an easy access to the corresponding carbene complexes.  相似文献   

9.
Two diethyl phosphonated phosphine ligands of formula Ph2P(CH2)3PO3Et2 (ligand L) and Ph2P(4-C6H4PO3Et2) (ligand L′) were used to prepare different complexes of platinum(II) (1, cis-PtCl2L2; 2, trans-PtCl2L2·H2O; 3A and 3B, cis- and trans-PtCl2L′2) and palladium(II) (4, [PdCl2L]2; 5, trans-PdCl2L2·H2O; 6, trans-PdCl2L′2·CH2Cl2). The single-crystal X-ray structure analyses of complexes 1, 2, 4-6 indicate that complexation involved only the phosphine end, whereas the strong polarization of the PO bond was highlighted by the formation of hydrogen bonds with a water molecule in 2 and 5, and with a dichloromethane molecule in 6, with an exceptionally short CH?O hydrogen bond length (C?O separation 3.094(3) Å).  相似文献   

10.
Reactions of [Pt2(μ-Cl)2(CP)2] (CP = CH2C(Me2)PBut2-C,P) with various anionic ligands differing in ligand bite and denticity have been investigated and the resulting products have been characterized by elemental analyses and NMR (1H, 13C, 31P, 195Pt) spectroscopy. Stereochemistry of the complexes has been deduced by NMR spectroscopy. Structures of [Pt2(μ-SPh)2(CP)2], [Pt2(μ-pz)2(CP)2], [PtCl(Spy)(PBut3)], [Pt2(μ-SCOPh)2(CP)2] and [Pt{S2P(OPri)2}(CP)] have been established by single crystal X-ray diffraction analyses. The complex [Pt2(μ-SPh)2(CP)2] adopts a sym cis configuration while other binuclear complexes exist in a sym trans configuration. The molecular structure of [Pt{S2P(OPri)2}(CP)] revealed that complex comprises of two four-membered chelate rings but in solution a dimeric structure based on 195Pt NMR data has been suggested.  相似文献   

11.
Water-soluble functionalized bis(phosphine) ligands L (ah) of the general formula CH2(CH2PR2)2, where for a: R = (CH2)6OH; bg: R = (CH2)nP(O)(OEt)2, n = 2–6 and n = 8; h: R = (CH2)3NH2 ( Scheme 1), have been prepared photochemically by hydrophosphination of the corresponding 1-alkenes with H2P(CH2)3PH2. Water-soluble palladium complexes cis-[Pd(L)(OAc)2] (18) were obtained by the reaction of Pd(OAc)2 with the ligands ah in a 1:1 mixture of dichloromethane:acetonitrile. The water-soluble phosphine ligands and their palladium complexes were characterized by IR, 1H and 31P NMR. A crystallographic study of complex 1 shows that the Pd(II) ion has a square planar coordination sphere in which the acetate ligands and the diphosphine ligand deviate by less than 0.12 Å from ideal planar.  相似文献   

12.
(S,S)-2,6-bis[(N-α-methylbenzyl)imino]phenylpalladium bromide was synthesised by oxidative addition of palladium(0) to (S,S)-1-bromo-2,6-bis[(N-α-methylbenzyl)imino]benzene. In contrast, (S,S)-2,6-bis[(N-α-methylbenzyl)imino]phenylplatinum chloride was synthesised by direct C-H activation from the reaction of potassium tetrachloroplatinate with (S,S)-1,3-bis[(N-α-methylbenzyl)imino]benzene. The X-ray crystal structures of both pincer complexes were obtained. Treatment of both complexes with silver hexafluoroanimonate gave effective but not stereoselective catalysts for a Michael reaction between methyl vinyl ketone and methyl 2-cyanopropanoate.  相似文献   

13.
Nickel(II) and palladium(II) form neutral 1?:?2 chelates with aromatic thiohydrazides, for example. thiobenzhydrazide, o-hydroxythiobenzhydrazide, furan-2-thiohydrazide, and thiophen-2-thiohydrazide. All the compounds are diamagnetic and have been characterized by elemental analysis and spectroscopic methods. o-Hydroxythiobenzhydrazido complexes of nickel(II) and palladium(II) were crystallized from DMSO and their structures were solved by X-ray diffraction. The complexes are isostructural with planar structures. Metal ion is linked to two identical deprotonated ligands through trans hydrazinic nitrogen and sulfur. Hydrogen of OH is involved in intramolecular hydrogen-bonding.  相似文献   

14.
We report new chiral bisimidazolium salts synthesized from naturally occurring l-amino acids. They served as precursors for bidentate N-heterocyclic carbene metal complexes. The chiral imidazoles could be synthesized in good yields via a one-pot ring closing reaction, followed by esterification. The methylene bridged bisimidazolium iodide salts are accessible in moderate yields. Corresponding palladium(II)- and platinum(II)-NHC complexes could be synthesized and fully characterized, but do not show optical activity. We also report a solid state structure of one of the synthesized palladium(II) biscarbene compounds derived from alanine.  相似文献   

15.
Two triphenylphosphine derivatives, diethyl [4-(diphenylphosphanyl)benzyl]phosphonate (3a) and tetraethyl {[5-(diphenylphosphanyl)-1,3-phenylene]dimethylene}bis(phosphonate) (3b), and also the corresponding free acids 4a and 4b were prepared. These ligands were characterized by 1H, 13C and 31P NMR spectroscopy and mass spectrometry. A full set of their Pd(II) and Pt(II) complexes of the general formula [MCl2L2] and one dinuclear complex trans-[Pd2Cl4(3a)2] were synthesized and their isomerization behaviour in solution was studied. The complexes were characterized by 1H, 13C, 31P and 195Pt NMR spectroscopy, mass spectrometry and far-IR spectroscopy. The X-ray structures of all complexes with 3a or 3b have usual slightly distorted square-planar geometry on the metal ion. Salts of phosphonic acids 4a and 4b and their complexes are freely soluble in aqueous solution; therefore, they can be potentially useful in aqueous or biphasic catalysis.  相似文献   

16.
Pt(II) and Pd(II) methyl- and chloro-complexes with the tridentate N-donor ligands ((pyridin-2-yl)methylene)quinolin-8-amine (NNPy), ((pyridin-2-yl)ethylidene)quinolin-8-yl-amine (NNMePy), (phenyl(pyridin-2-yl)methylene)quinolin-8-yl-amine (NNPhPy), ((thiazol-2-yl)methylene)quinolin-8-amine (NNTh) and ((imidazol-4-yl)methylene)quinolin-8-amine (NNImH) were prepared by metal-assisted condensation of 8-aminoquinoline and an ortho-substituted aldehydo- or keto- N-heterocycle. Preliminary reactivity studies involving the coordinated tridentate N-donors, the chloro-ligand and the M-CH3 bond were carried out, leading to the synthesis of several new complexes. During these studies, the formation of a novel five-coordinate Pt(II) carbonyl-complex was observed.  相似文献   

17.
Pt(II) and Pd(II) dichloride complexes with 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp) have been synthesized and characterized by infrared and 1H, 13C NMR, 13C CPMAS spectroscopy. The structures of the cis-PtCl2(dbtp)2 · EtOH (1) and cis-PdCl2(dbtp)(dmso) (2) has been determined by signal-crystal X-ray diffraction. In both complexes the X-ray crystal structures shows that heterocycle ligand (dbtp) binds the central atom monodentate via nitrogen atom N(3). In addition, compound (2) is interesting for its structural features, because it is the first report of mixed dichloride Pd(II) complexes with N-donor (triazolopyrimidine) and S-donor (dimethylsulfoxide) ligands. In this structure the Pd–Cl distances are: 2.302(1) and 2.281(1) Å, Pd–N 2.041(3) Å and Pd–S 2.245(1) Å. The 1H, 13C NMR studies show clearly that these structures are retained in solution.  相似文献   

18.
19.
Nine thermally stable complexes (η5-Cp*)[η5-(C5H4)CMe2CB10H10CR]MCl2 (R=H and Me) and (η5-Cp*)[η5; η1-(C5H4)CMe2(CB10H10C)]MCl have been prepared via metathesis reactions of Cp*MCl3 (M=Ti, Zr and Hf, Cp*=pentamethylcyclopentadienyl) with monolithium salts of (C5H5)CMe2(CB10H10CR) (R=H and Me) and with dilithium salt of (C5H5)CMe2(CB10H10CH), respectively. These compounds have been fully characterized by various spectroscopic methods and elemental analyses. All of the compounds except (η5-Cp*)[η5-(C5H4)CMe2CB10H10CMe]HfCl2 were additionally characterized by a single crystal X-ray diffraction study, establishing their monomeric bent metallocene structural feature with carborane acting as a substituent or an ancillary ligand. The titanium and zirconium complexes produce high-density polyethylenes with the activity range of about 103-104 g PE per mol of M bar h in the presence of modified methylaluminoxane cocatalyst.  相似文献   

20.
New palladium(II) and platinum(II) complexes, cis-[Pd(bpy)(sac)2] (1) and cis-[Pt(bpy)(sac)2] (2), where sac = saccharinate, bpy = 2,2′-bipyridine, have been synthesized and characterized by elemental analysis, UV–Vis, IR, 1H NMR and 13C NMR. The structures of the DMSO solvated complexes are determined by X-ray diffraction. Both complexes are isomorphous and the metal ions are coordinated by two N-bonded sac ligands, and two nitrogen atoms of pyridyl groups of bpy in a cis fashion. The mononuclear species interact each other through weak intermolecular C–H?O hydrogen bonds, C–H?π and π?π interactions leading to three-dimensional supramolecular networks. All complexes exhibit a high thermal stability in the solid state, and are fluorescent in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号