首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A new series of titanium(IV) and zirconium(IV) amides have been prepared from the reaction between M(NMe2)4 (M = Ti, Zr) and C2-symmetric ligands, (R)-2,2′-bis(pyridin-2-ylmethylamino)-6,6′-dimethyl-1,1′-biphenyl (2H2), (R)-2,2′-bis(pyrrol-2-ylmethyleneamino)-6,6′-dimethyl-1,1′-biphenyl (3H2), (R)-2,2′-bis(diphenylphosphinoylamino)-6,6′-dimethyl-1,1′-biphenyl (4H2), (R)-2,2′-bis(methanesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (5H2), (R)-2,2′-bis(p-toluenesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (6H2), and C1-symmetric ligands, (R)-2-(diphenylthiophosphoramino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (7H) and (R)-2-(pyridin-2-ylamino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (8H), which are derived from (R)-2,2′-diamino-6,6′-dimethyl-1,1′-biphenyl. Treatment of M(NMe2)4 with 1 equiv. of N4-ligand, 2H2 or 3H2 gives, after recrystallization from an n-hexane solution, the chiral zirconium amides (2)Zr(NMe2)2 (9), (3)Zr(NMe2)2 (11), and titanium amide (3)Ti(NMe2)2 (10), respectively, in good yields. Reaction of Zr(NMe2)4 with 1 equiv of diphenylphosphoramide 4H2 affords the chiral zirconium amide (4)Zr(NMe2)2 (12) in 85% yield. Under similar reaction conditions, treatment of Ti(NMe2)4 with 1 equiv. of sulphonylamide ligand, 5H2 or 6H2 gives, after recrystallization from a toluene solution, the chiral titanium amides (5)Ti(NMe2)2·0.5C7H8 (13·0.5C7H8) and (6)Ti(NMe2)2 (15), respectively, in good yields, while reaction of Zr(NMe2)4 with 1 equiv. of 5H2 or 6H2 gives the bis-ligated complexes, (5)2Zr (14) and (6)2Zr (16). Treatment of M(NMe2)4 with 2 equiv. of diphenylthiophosphoramide ligand 7H or N3-ligand 8H gives, after recrystallization from a benzene solution, the bis-ligated chiral zirconium amides (7)2Zr(NMe2)2 (17) and (8)2Zr(NMe2)2 (19), and bis-ligated chiral titanium amide (8)2Ti(NMe2)2 (18), respectively, in good yields. All new compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 10, 12, 13, and 17-19 have further been confirmed by X-ray diffraction analyses. The zirconium amides are active catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, affording cyclic amines in good to excellent yields with moderate ee values, while the titanium amides are not.  相似文献   

2.
A series of new metal-organic frameworks (MOFs) based on 9,10-bis(imidazol-1-ylmethyl)anthracene and four structurally related aromatic dicarboxylates, namely, [Cd(L)(o-bdc)]·1.25H2O (1), [Cd(L)(pydc)] (2), [Zn(L)(pydc)] (3), [Cd3(L)2(m-bdc)3] (4) and [Cd(L)(p-bdc)]·2H2O (5) (L = 9,10-bis(imidazol-1-ylmethyl)anthracene, o-H2bdc = 1,2-benzenedicarboxylic acid, H2pydc = 2,3-pyridinedicarboxylic acid, m-H2bdc = 1,3-benzenedicarboxylic acid, p-H2bdc = 1,4-benzenedicarboxylic acid) have been synthesized under hydrothermal conditions. Their structures have been determined by single-crystal X-ray diffraction analyses, and further characterized by infrared spectra (IR), elemental analyses and powder X-ray diffraction (PXRD). Compound 1 displays a two-dimensional (2D) layer structure, which is stabilized by intramolecular hydrogen-bonding interactions. Compounds 2 and 3 are isostructural and show 2D layer structures, which are further extended by intermolecular C-H···O hydrogen-bonding interactions to form 3D supramolecular frameworks. Compound 4 has a 2D layer structure with trinuclear units [Cd3(u3-O)2]6+. Compound 5 is a 3D three-fold interpenetrating framework with a Schläfli symbol (66·8). The structural differences of these compounds indicate that the anions play important roles in the resulting structures of the MOFs. The luminescent properties were also investigated for compounds 1-5.  相似文献   

3.
An innovative and efficient route to the synthesis of 9,10-dihydro-3-formylphenanthrenes 7 has been delineated through the ring transformation of 2-oxo-4-sec-amino-5,6-dihydro-2H-benzo[h]chromene-3-carbonitriles 4 with methyl glyoxaldimethylacetal 5 to masked 3-dimethoxymethyl-1-sec-amino-9,10-dihydrophenanthrene-3-carbonitriles 6 followed by deacetalation with Amberlyst 15 in excellent yields.  相似文献   

4.
The syntheses of group 4 metal complexes containing the picolyldicarbollyl ligand DcabPyH [nido-7-HNC5H4(CH2)-8-R-7,8-C2B9H10] (2) are reported. New types of constrained geometry group 4 metal complexes (DcabPy)MCl2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}MCl2] (M = Ti, 3; Zr, 4; R = H, a; Me, b), were prepared by the reaction of 2 with M(NMe2)2Cl2 (M = Ti, Zr). The reaction of 2 with M(NMe2)4 in toluene afforded (DcabPy)M(NMe2)2, [{(η5-RC2B9H9)(CH2)(η1-NC5H4)}M(NMe2)2] (M = Ti, 5; Zr, 6; R = H, a; Me, b), which readily reacted with Me3SiCl to yield the corresponding chloride complexes (DcabPy)MCl2 (M = Ti, 3; Zr, 4; R = H, a; Me, b). The structures of the diamido complexes (DcabPy)M(NMe2)2 (M = Ti, 5; Zr, 6) were established by X-ray diffraction studies of 5a, 5b, and 6a, which verified an η51-bonding mode derived from the dicarbollylamino ligand. Related constrained geometry catalyst CGC-type alkoxy titanium complexes, (DcabPy)Ti(OiPr)2 (7), were synthesized by the reaction of 2 with Ti(OiPr)4. Sterically less demanding phenols such as 2-Me-C6H4OH replaced the coordinated amido ligands on (DcabPy)Ti(NMe2)2 (5a) to yield aryloxy stabilized CGC complexes (DcabPy)Ti(OPhMe)2(PhMe  =  2- Me-C6H4, 8). NMR spectral data suggested that an intramolecular Ti-N coordination was intact in solution, resulting in a stable piano-stool structure with two aryloxy ligands residing in two of the leg positions. The aryloxy coordinations were further confirmed by single crystal X-ray diffraction studies on complexes (DcabPy)Ti(OPhMe)2 (8).  相似文献   

5.
Two complexes: [(n-Bu2Sn)4(L)2O2(OC2H5)2] (1) and [(C6H5)3Sn(L)] (2) (where, HL is 12-(4-methylbenzoyl)-9,10-dihydro-9,10-ethanoanthracene-11-carboxylic acid) have been prepared and structurally characterized by means of elemental analysis and vibrational, 1H NMR and FT-IR spectroscopies. The crystal structures of 1 and 2 have been determined by X-ray crystallography. Three distannoxane rings are present to the centrosymmetric dimeric tetraorganodistannoxane by virtue of μ3-oxo form the central R4Sn2O2 core with a planar Sn2O2 ring, resulting in a ladder type structural motif in the molecular structure of 1, and five-coordinated tin atoms are present in the distannoxane dimer. While the molecular of 2 adopts a monomeric distorted tetrahedral configuration with the carboxylate ligand coordinating in a monodentate mode. Both 1 and 2 exhibited good antibacterial and antitumour activities and have a potential to be used as drugs.  相似文献   

6.
Condensation of (R)-2,2′-diamino-1,1′-binaphthyl or (R)-6,6′-dimethylbiphenyl-2,2′-diamine with 2 equiv of 2-pyridine carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (R)-N,N′-bis(pyridin-2-ylmethylene)-1,1′-binaphthyl-2,2′-diimine (1), and (R)-N,N′-bis(pyridin-2-ylmethylene)-6,6′-dimethylbiphenyl-2,2′-diimine (3), respectively, in good yields. Reduction of 1 with an excess of NaBH4 in a solvent mixture of MeOH and toluene (1:1) at 50 °C gives (R)-N,N′-bis(pyridin-2-ylmethyl)-1,1′-binaphthyl-2,2′-diamine (2) in 95% yield. Rigidity plays an important role in the formation of helicate silver(I) complexes. Treatment of 1, or 3 with 1 equiv of AgNO3 in mixed solvents of MeOH and CH2Cl2 (1:4) gives the chiral, dinuclear double helicate Ag(I) complexes [Ag2(1)2][NO3]2 (4) and [Ag2(3)2][NO3]2 · 2H2O (6), respectively, in good yields. While under the similar reaction conditions, reaction of 2 with 1 equiv of AgNO3 affords the chiral, mononuclear single helicate Ag(I) complex [Ag(2)][NO3] (5) in 90% yield. [Ag2(1)2][NO3]2 (4) can further react with excess AgNO3 to give [Ag2(1)2]3[NO3]2[Ag(CH3OH)(NO3)3]2 · 2CH3OH (7) in 75% yield. All compounds have been fully characterized by various spectroscopic techniques and elemental analyses. Compounds 1 and 5-7 have been further subjected to single-crystal X-ray diffraction analyses.  相似文献   

7.
Novel substituted 2-[(2-hydroxyethyl)]aminophenols, MeN(CHR1CR2R3OH)(C6H4-o-OH) (2-5), were synthesized by the reaction of 2-methylaminophenol with corresponding oxiranes. Titano-spiro-bis(ocanes) [MeN(CHR1CR2R3O)(C6H4-o-O)]2Ti 6-9 (2, 6, R1 = H, R2 = R3 = Me; 3, 7, R1 = R2 = Ph (treo-), R3 = H; 4, 8, R1 = Ph, R2 = R3 = H; 5, 9, R1 = R2 = H, R3 = Ph) based on [ONO]-ligands have been synthesized. The obtained compounds were characterized by 1H and 13C NMR spectroscopy and elemental analysis data. The complex [Ti(μ2-O){O-o-C6H4}{μ2-CMe2CH2}NMe]6 (10) was obtained by controlled hydrolysis of 6. Molecular structure of 10 was determined by X-ray structure analysis.  相似文献   

8.
The half-sandwich complex [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}(NMe2)3] (6) was prepared from (η1-C5H5)B(NiPr2)N(H)iPr (5) and [Ti(NMe2)4] with cleavage of one equivalent of HNMe2 and further converted into the corresponding constrained geometry complex [Ti{(η5-C5H4)B(NiPr2)NiPr}(NMe2)2] (7) by elimination of a second equivalent of HNMe2. Reaction of the half-sandwich complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}(NMe2)3] (R = iPr, tBu) with excess Me3SiCl yielded the corresponding dichloro complexes [Ti{(η5-C5H4)B(NiPr2)N(H)R}Cl2(NMe2)] (R = tBu (10), iPr (11)). The intermediate species [Ti{(η5-C5H4)B(NiPr2)N(H)iPr}Cl(NMe2)2] (9) could also be spectroscopically characterised. Partial hydrolysis of 10 and 11, respectively, resulted in formation of [{TiCl2(μ-{OB(NHMe2)-η5-C5H4})}2-μ-O] (12). The molecular structures of 10 and 12 have been determined by X-ray crystallographic analyses. Complex 10, when activated with MAO, was found to be a highly active styrene polymerisation catalyst while being inactive towards the polymerisation of ethylene.  相似文献   

9.
A series of potentially bidentate benzimidazolyl ligands of the type (Bim)CH2D (where Bim = benzimidazolyl and D = NMe2L1, NEt2L2, NPri2L3, OMe L4 and SMe L5) has been reacted with Ti(NMe2)4 to give five- and six-coordinate Ti(IV) complexes of the type [(Bim)CH2D]Ti(NMe2)3 and [(Bim)CH2D]2Ti(NMe2)2, respectively. The X-ray structures of [(Bim)CH2OMe]Ti(NMe2)3, [(Bim)CH2NMe2]2Ti(NMe2)2 and [(Bim)CH2OMe)]2Ti(NMe2)2 are reported along with an evaluation of their behavior in ethylene polymerization.  相似文献   

10.
Title compounds of the type 2,3,5,6-tetraphenyl-1,4-di-X-1,4-di-Y-1,4-disilacyclohexa-2,5-diene wherein X=Y=NMe2 (4); X=NMe2, Y=Cl (cis, trans-5); X=NMe2, Y=Me [(trans)-6] and X=t-Bu, Y=Cl (trans-8) were synthesized from Si2(NMe2)5Cl, sym-Si2(NMe2)4Cl2, sym-Si2(NMe2)4Me2, and sym-Si2Cl4(t-Bu)2, respectively, in the presence of diphenylacetylene at 200 °C. Similarly the analogous title compound from the combination of 1-phenyl-1-propyne and Si2(NMe2)5Cl [X=Y=NMe2 (cis and trans-7) was synthesized. In all cases where cis/trans diastereomers could arise from two different silicon substituents (5, 6, 8) the trans isomer was the sole or dominant product. Evidence for the intermediacy of the silylene Si(NMe2)2 in these reactions was gained from a trapping experiment. Compound 4 upon treatment with SiCl4, SiBr4 or PI3 provided the corresponding 1,1,4,4-tetrahalo derivatives 9a-c, respectively. Treatment of 4 with MeOH or PhOH gave the 1,1,4,4-tetramethoxy and tetraphenoxy analogues 9d and 9e, respectively. The tetrachloro derivative 9a upon LAH reduction led to the corresponding tetrahydro compound 10, while the reaction of 9a with H2O gave the tetrahydroxy derivative 11. Allowing (trans)-6 to react with SiCl4 provided a ca. 1:1 cis/trans ratio of the derivative 12 in which X=Cl, Y=Me, and possible pathways that rationalize this loss of stereochemistry are proposed. Synthesis of trans-13 in which X=t-Bu, Y=H was achieved by LAH reduction of 8. All of the title compounds except 8 experience free phenyl rotation at room temperature. At −30 °C this rotation in 8 is essentially halted. The molecular structures of 4, 8, 9c, 9e, 10 and 13 were determined by X-ray crystallography.  相似文献   

11.
Xiaoling Jin  Li Yang  Fa Zhang 《Tetrahedron》2004,60(12):2881-2888
Isotachysterol, the acid-catalyzed isomerization product of vitamin D3, produces seven previously unknown oxygenation products in a self-initiated autoxidation reaction under atmospheric oxygen in the dark at ambient temperature. They are (5R)-5,10-epoxy-9,10-secocholesta-6,8(14)-dien-3β-ol (6a), (5S)-5,10-epoxy-9,10-secocholesta-6,8(14)-dien-3β-ol (6b), (10R)-9,10-secocholesta-5,7,14-trien-3β,10-diol (7a), (10S)-9,10-secocholesta-5,7,14-trien-3β,10-diol (7b), (7R,10R)-7,10-epoxy-9,10-secocholesta-5,8(14)-dien-3β-ol (8), 5,10-epidioxyisotachysterol (9) and 3,10-epoxy-5-oxo-5,10-seco-9,10-secocholesta-6,8(14)-dien-10-ol (10). The formation of these products is explained in terms of free radical peroxidation chemistry.  相似文献   

12.
Titanium pyrrolyl complexes Ti(NMe2)2(dap)2 (1), where dap is 2-(N,N-dimethylaminomethyl)pyrrolyl, and Ti(NMe2)3(bap) (3), where bap is 2,5-bis(N,N-dimethylaminomethyl)pyrrolyl, were found to be effective catalysts for the iminohydrazination of alkynes, a new multicomponent coupling reaction involving an alkyne, hydrazine, and isonitrile. A brief study on the scope of the reaction suggests that it is applicable to internal and terminal alkynes, alkyl and aryl isonitriles, and alkyl- and aryl-containing 1,1-disubstituted hydrazines. The best yields were obtained with terminal alkynes and alkyl isonitriles. The regioselectivity of the reactions is quite sensitive to catalyst structure, and, in all cases, we were able to obtain one regioisomer of the iminohydrazination product with either 1 or 3 as catalyst. The conformation of the products was probed by NMR spectroscopy and DFT calculations, which suggest that the s-cis isomer of the hydrazone-enamine tautomer is the most favorable configuration. However, several configurations are probably accessible in solution at room temperature. Reaction of 1 with 2 equivalents of H2NNMe2 results in the formation of a dinuclear complex Ti2(dap)3(NNMe2)2(NHNMe2) (4), where one dap ligand was removed protolytically. Examination of regioselectivities in iminohydrazination reactions using 4 and mono(dap) complex Ti(dap)(NMe2)3 (5) are consistent with these species using the same catalytic cycle as 1. Consequently, the active species is likely a mono(dap) titanium complex. Current mechanistic information is consistent with a hydrazido(2−) intermediate and a pathway reminiscent of the Bergman hydroamination mechanism. Ti(NMe2)3(bap) (3) and Ti2(dap)3(NNMe2)2(NHNMe2) (4) were characterized by X-ray diffraction.  相似文献   

13.
We prepared a 9,10-dihydro-9,10-disilaanthracene (DSA) derivative 4 bearing a bulky aryl substituent, a 2,4,6-triisopropylphenyl (Tip) group, on the silicon atoms via a Wurtz-type coupling reaction between two molecules of (2-chlorophenyl)(2,4,6-triisopropylphenyl)silane (3) in a head-to-tail fashion. The structural determination of cis-4 and trans-4 was examined using 1H NMR spectroscopy and theoretical calculations. In addition, the molecular structure of cis-4 was unambiguously determined by X-ray crystallography. The tricyclic DSA skeleton of cis-4 adopts a folded structure with a boat-like central ring in which the rotation about the Si-Tip bond is restricted. In contrast, theoretical calculations suggest that the tricyclic DSA skeleton of trans-4 has an almost planar structure.  相似文献   

14.
Amination of 1-bromo-2-methylpyridine with trans-1,2-diaminocyclohexane gives the corresponding bis(aminopyridine) H2L1. Conversion of the same diamine to the N,N′-bis(amino-4,4-dimethylthiazoline) H2L2 is also completed in three steps. The analogous aminooxazoline is however inaccessible, although the aminocyclohexane analogue is prepared readily. The proligand H2L1 forms bis(aminopyridinato) alkyl complexes of the type [ZrL1R2] (R = CH2Ph, CH2But). The molecular structure of the neopentyl complex shows that the chiral backbone leads to a puckering of the N4Zr coordination sphere, which contrasts with the related cyclohexyl-bridged Schiff-base complexes which are essentially planar. [ZrL2(CH2But)2] - the first aminothiazolinato complex - is formed similarly. A comparison of the structures of [ZrL1(CH2But)2] and [ZrL2(CH2But)2] indicates that the latter has a fully delocalised N-C-N system, rather similar to a bis(amidinate). Reaction of H2L2 with [Ti(NMe2)4] gives [TiL2(NMe2)2] which appears to be C2-symmetric like the above complexes according to NMR spectra, but has one uncoordinated thiazoline unit in the solid state. This is a result of increased ring strain at the smaller titanium metal centre.  相似文献   

15.
Reaction of Ln(NO3)3·6H2O with H2L [H2L=N,N′-bis(salicylidene)propane-1,2-diamine] gives rise to five new coordination polymers, viz. [Pr(H2L)(NO3)3(MeOH)]n (1) and [Ln(H2L)1.5(NO3)3]n [Ln=La (2), Eu (3), Sm (4) and Gd (5)]. Crystal structural analysis reveals that H2L effectively functions as a bridging ligand forming one-dimensional (1D) chain and two-dimensional (2D) open-framework polymers. Solid-state fluorescence spectra of 3 and 4 exhibit typical red fluorescence of Eu(III) and Sm(III) ions at room temperature while 2 emits blue fluorescence of ligand H2L. The lowest triplet level of ligand H2L was calculated on the basis of the phosphorescence spectrum of 5. The energy transfer mechanisms in the lanthanide polymers were described and discussed.  相似文献   

16.
Compound 3, N-((1S)-1-cyclohexylethyl)-9,10-dihydro-9,10-ethanoanthracene-(11S,12S)-dicarboximide-1,2,3,4-octahydro, was obtained by ruthenium-assisted hydrogenation of the hydroanthracene-dicarboximide 2 under mild conditions (3 bar H2 and room temperature). In contrast to other related compounds, dicarboximides 2 and 3 were stereo-selectively obtained, confirmed by both solid state (X-ray diffraction) and solution (NMR). This selectivity denoted a hindered rotation around the N-CH axis together with the aromatic hydrogen bond acceptor behaviour of the hydroanthracene skeleton towards a methylene of the cyclohexyl group of the imide moiety. In addition, the nature of the metallic species involved in the hydrogenation process was also investigated.  相似文献   

17.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

18.
The reactions of ligands 4-C6H5C6H4CHNCH2CH2NMe2 (1a) and 2-C6H5C6H4CHNCH2CH2NMe2 (1b) in front of cis-[PtCl2(dmso)2] or cis-[PtPh2(SMe2)2] produced compounds [PtCl2{4-C6H5C6H4CHNCH2CH2NMe2}] (2aCl) and [PtCl2{2-C6H5C6H4CHNCH2CH2NMe2}] (2bCl) or [PtPh2{4-C6H5C6H4CHNCH2CH2NMe2}] (2aPh) and [PtPh2{2-C6H5C6H4CHNCH2CH2NMe2}] (2bPh). From all these compounds, the corresponding cyclometallated [C,N,N′] platinum(II) compounds 3aCl, 3bCl, 3aPh and 3bPh were obtained although under milder conditions and with higher yields for the phenyl derivatives. The reaction of compounds 3aPh and 3bPh with methyl iodide gave cyclometallated [C,N,N′] platinum(IV) compounds 4aPh and 4bPh of formula [PtMePhI{C6H5C6H3CHNCH2CH2NMe2}]. Compounds 3aCl and 3bCl containing a chloro ligand, although unreactive towards methyl iodide, undergo oxidative addition of chlorine to produce the corresponding platinum(IV) compounds [PtCl3{4-C6H5C6H3CHNCH2CH2NMe2}] (6aCl and 6bCl). All compounds were characterised by NMR spectroscopy and crystal structures of compounds 3bCl and 6bCl are also reported.  相似文献   

19.
Chloride ligand substitution reactions of tert-butyl- and arylimido-titanium complexes supported by the pendant arm functionalised N-trimethylsilyl benzamidinate ligand Me3SiNC(Ph)NCH2CH2CH2NMe2 are described. Reaction of previously-described [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Cl] (1) with PhLi afforded thermally sensitive [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Ph] (2). The corresponding reaction of 1 with MeLi afforded [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}Me] (3) detected by 1H-NMR spectroscopy but this compound could not be isolated. Reaction of 1 with LiCH2SiMe3 gave a complex mixture, but with LiN(SiMe3)2 and LiO-2,6-C6H3Me2 the compounds [Ti(NtBu){Me3SiNC(Ph)NCH2CH2CH2NMe2}X] (X=N(SiMe3)2 (4) or O-2,6-C6H3Me2 (5)) were isolated. The X-ray structure of 5 was determined. Reaction of the homologous compound [Ti(NtBu){Me3SiNC(Ph)NCH2CH2NMe2}Cl] (6) (containing a 2-carbon atom chain in the pendant arm) with MeLi or PhLi were unsuccessful although the aryloxide compound [Ti(NtBu){Me3SiNC(Ph)NCH2CH2NMe2}(O-2,6-C6H3Me2)] (7) could be isolated from the reaction of 6 with LiO-2,6-C6H3Me2. Reaction of the 3-carbon pendant arm arylimido compound [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}Cl] (8) with MeLi afforded thermally sensitive [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}Me] (9), and although the analogous phenyl homologue was elusive, the aryloxide derivative [Ti(N-2,6-C6H3Me2){Me3SiNC(Ph)NCH2CH2CH2NMe2}(O-2,6-C6H3Me2)] (10) was successfully isolated and structurally characterised. Comparison of the X-ray structures of 5 and 10 show unexpectedly large differences between the TiNR and TiOAr bond lengths in the two compounds.  相似文献   

20.
A series of zirconium and hafnium alkoxide and amide complexes containing symmetrical tridentate pyrrolyl ligand, [C4H2NH(2,5-CH2NMe2)2] have been synthesized conveniently by treatment of 2,6-di-tert-butylphenol, tert-butanol or pyrrole in pentane and their reactivity over ring opening polymerization of ε-caprolactone have been carried out. Reactions of [C4H2NH(2,5-CH2NMe2)2] with M(NEt2)4 (M = Zr or Hf) originate [C4H2N(2,5-CH2NMe2)2]M(NEt2)3 (1, M = Zr; 2, M = Hf). Furthermore, reactions of [C4H2N(2,5-CH2NMe2)2]M(NEt2)3 with 2,6-di-tert-butylphenol, tert-butanol or pyrrole afford [C4H2N(2,5-CH2NMe2)2]M(OC6H3-2,6-tBu2)(NEt2)2 (3, M = Zr; 4, M = Hf), [C4H2N(2,5-CH2NMe2)2]M(OtBu)3 (5, M = Zr; 6, M = Hf) and [C4H2N(2,5-CH2NMe2)2]M(C4H4N)3 (7, M = Zr; 8, M = Hf), respectively, in satisfactory yield. All the complexes have been characterized by NMR spectra as well 3, 4 and 6 subjected to the X-ray diffraction analysis. Complexes 3-8 have been used as initiators for the ring-opening polymerization of ε-caprolactone and observed broad PDI values (1.84-2.75) representing multiple reactivity centers of these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号