首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aminosilanes bearing bulky substituents on nitrogen centers, [(ArNH)2SiPhMe] (Ar = 2,6-iPr2C6H3 (1), 2,4,6-Me3C6H2 (2)) and half-sandwich lithium silylamide [(2,6-Et2C6H3NLi)(2,6-Et2C6H3NH)SiPh2] (3) have been prepared and characterized by elemental analysis, IR, EI mass and NMR (1H and 29Si) spectroscopic studies. The solid state structures of 2 and 3 have been determined by single crystal X-ray diffraction studies. The molecule 2 has a C1 symmetry due to the steric crowding, and the two N-H protons are approximately trans to each other. The amido nitrogen atoms in 2 show significant deviation from trigonal-planar geometry, and as a result, the observed Si-N bonds are marginally longer than those observed in aminosilanes with planar nitrogen atoms. The molecule 3 exists as discrete dimer with an inversion center. The Li ion in 3 forms intramolecular π-complex with the neighboring aryl (2,6-Et2C6H3) group, to form a half-sandwich lithium silylamide.  相似文献   

2.
Chiral “P-N-P” ligands, (C20H12O2)PN(R)PY2 [R = CHMe2, Y = C6H5 (1), OC6H5 (2), OC6H4-4-Me (3), OC6H4-4-OMe (4) or OC6H4-4-tBu (5)] bearing the axially chiral 1,1′-binaphthyl-2,2′-dioxy moiety have been synthesised. Palladium allyl chemistry of two of these chiral ligands (1 and 2) has been investigated. The structures of isomeric η3-allyl palladium complexes, (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopy. The solid state structure of [Pd(η3-1,3-Ph2-C3H3){κ2-(racemic)-(C20H12O2)PN(CHMe2)PPh2}](PF6) has been determined by X-ray crystallography. Preliminary investigations show that the diphosphazanes, 1 and 2 function as efficient auxiliary ligands for catalytic allylic alkylation but give rise to only moderate levels of enantiomeric excess.  相似文献   

3.
Singlet-triplet energy gaps in cyclopenta-2,4-dienylidene, as well as its 2- or 3-halogenated derivatives, are compared and contrasted with their sila, germa, stana, and plumba analogues; at HF/6-31G* and B3LYP/ 6-311++G(3df, 2p) levels of theory. Energy gaps (ΔGt-s), between triplet (t) and singlet (s) states, appear linearly proportional to: (i) the size of the group 14 divalent element (M = C, Si, Ge, Sn and Pb), (ii) the angle ∠C-M-C, and (iii) the ΔG(LUMO-HOMO) of the singlet state involved. The magnitude of ΔGt-s, for each 2- and/or 3-substituted species studied, increases with an order of: carbenes < silylenes < germylenes < stanylenes < plumbylenes. This order reverses for the barriers of the ring puckering. The puckering occurs with more ease for every singlet, compared to its corresponding triplet form.Regardless of the group 14 element (M) employed, every 3-halo-substituted species is more stable than the corresponding 2-halo-substituted isomer. For M = Pb, Sn and/or Ge; 3-halo-substituted species have higher ΔGt-s than their corresponding 2-halo-substituted analogues. For M = Si, similar ΔGt-s are found for 2- and 3-halogenated isomers. For M = C, 3-halo-substituted species have lower ΔGt-s than their corresponding 2-halo-substituted analogues.Every cyclic singlet has a larger ∠C-M-C angle, than its corresponding cyclic triplet state, except for 3-halosilacyclopenta-2,4-dienylidenes where triplet has a larger ∠C-M-C angle than its corresponding singlet state.  相似文献   

4.
The literature data on X substituent influence on the 1H, 29Si and 15N NMR chemical shifts (δ) and coupling constants (J) of Si-substituted silatranes , as well as M-N bond lengths (d) in atranes (M = C, Si, Ge, Sn, Pb) have been analyzed. It was established for the first time that the δ, J and d values depend not only on the inductive and resonance effects but also on the polarizability of X substituents. The polarizability contribution ranges from 8% to 25%.  相似文献   

5.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

6.
The ion molecule reactions between C5H5M+ (M = Fe, Ni) with some substituted thiophenes have been studied in an ion trap mass spectrometer. The reactions of halogen substituted thiophenes lead to the formation of a new C-C bond between the cyclopentadiene ring and the thiophene with the loss of a neutral HX. The reaction mechanism has been investigated by means of DFT calculations and it was found that the insertion of the metal atom in the C-X bond is the key step in the process.  相似文献   

7.
Two new charge-transfer salts, [CpFeCpCH2N(CH3)3]4[PMo12O40] · CH3CN (1) and [CpFeCpCH2N(CH3)3]4[GeMo12O40] (2), were synthesized by the traditional solution synthetic method and their structures were determined by single-crystal X-ray analysis. Salt 1 belongs to the triclinic space group P1, and salt 2 belongs to the triclinic space group . There exist the complex interactions of the cationic ferrocenyl donor and Keggin polyanion in the solid state. The solid state UV-Vis diffuse reflectance spectra indicate the presence of a charge-transfer band climbing from 450 nm to well beyond 900 nm for 1, a charge-transfer band from 460 to 850 nm with λmax = 630 nm for 2.The EPR spectra of salts 1 and 2 at 77 K show a signal at g = 2.0048 and 1.9501, respectively, ascribed to the delocalization of one electron in reduced Keggin ion in salt 1 and the MoVI in [GeMo12O40]4− is partly reduced to MoV owing to the charge-transfer transitions taking place between the ferrocenyl donors and the POM acceptors. The two compounds were also characterized by IR spectroscopy and cyclic voltammetry.  相似文献   

8.
When divalent metal chloride solutions of Mn, Fe, Co, Ni and Cd were mixed with potassium titanyl oxalate solution, mixed metal oxalates were obtained in the case of Fe, Co and Ni at room temperature in the pH range 1.5–3. In the case of manganese, heating was found to be necessary to induce precipitation and complete precipitation occurred at 80 °C. Mixed cadmium and titanyl oxalate precipitation was complete at a pH of 3 at room temperature. Various physico-chemical techniques were employed to characterize the as-dried oxalate precursors and the final MTiO3 oxide powders (M = Mn, Fe, Co, Ni and Cd) obtained on thermal decomposition. All these experimental results relating to the synthesis and characterizations of MTiO3 oxides are presented in this paper. The results suggest that the reaction of potassium titanyl oxalate and metal chloride solutions may not lead to the formation of a single molecular precursor by direct salt elimination reaction in the pH range 1.5–3.  相似文献   

9.
The reaction of Ph3MLi (M = Si, Ge, and Sn) with tri-t-butylcyclopropenium tetrafluoroborate gives the cyclopropenyl compounds Cyp*MPh3 as air and moisture stable solids in 11%, 74%, and 77% yields, respectively. Attempts to prepare Cyp*PbPh3 by this method were unsuccessful. The X-ray crystal structures of all three of these compounds were obtained. The M-C(Cyp*) bond distances increase with the order: Sn-C (2.19 Å) > Ge-C (2.00 Å) > Si-C (1.91 Å). A high degree of steric strain is evidenced for the silicon derivative which forms an exocyclic bond angle (Si-C(Cyp*)-C(tBu)) of 121.6°. The high degree of steric strain for the silicon analog is believed to be responsible for the low yields for its synthesis.  相似文献   

10.
We find sandwiched metal dimers CB5H6M-MCB5H6 (M = Si, Ge, Sn) which are minima in the potential energy surface with a characteristic M-M single bond. The NBO analysis and the M-M distances (Å) (2.3, 2.44 and 2.81 for M = Si, Ge, Sn) indicate substantial M-M bonding. Formal generation of CB5H6M-MCB5H6 has been studied theoretically. Consecutive substitution of two boron atoms in B7H−27 by M (Si, Ge, Sn) and carbon, respectively followed by dehydrogenation may lead to our desired CB5H6M-MCB5H6. We find that the slip distorted geometry is preferred for MCB5H7 and its dehydrogenated dimer CB5H6M-MCB5H6. The slip-distortion of M-M bond in CB5H6M-MCB5H6 is more than the slip distortion of M-H bond in MCB5H7. Molecular orbital analysis has been done to understand the slip distortion. Larger M-M bending (CB5H6M-MCB5H6) in comparison with M-H bending (MCB5H7) is suspected to be encouraged by stabilization of one of the M-M π bonding MO’s. Preference of M to occupy the apex of pentagonal skeleton of MCB5H7 over its icosahedral analogue MCB10H11 has been observed.  相似文献   

11.
Mismatched molecular 1:1 complexes of C10F8 with catenated chalcogen-nitrogen compounds C6H5-X-NSN-SiMe3 (X = S, Se) were prepared and characterized by X-ray crystallography. The complexes provide examples of structurally non-rigid polyheteroatom molecules involved in non-covalent arene-polyfluoroarene π-stacking interactions. In going from homocrystals to the co-crystals, the molecular Z, E configuration of the catenated compounds changes from noticeably non-planar to perfectly planar, i.e. C10F8 acts as “molecular iron”. On the other hand, C10H8 does not produce complexes with C6F5-X-NSN-SiMe3 (X = S, Se).  相似文献   

12.
Reaction of Cl3SiR or (EtO)3SiR with [PW11O39]7− affords the disubstituted hybrid anions [PW11O39(SiR)2O]3−. These species have been characterized by IR spectroscopy in the solid state and by multinuclear NMR (1H, 29Si, 31P and 183W) and cyclic voltammetry in solution. The hydrosilylation of [PW11O39(Si-CHCH2)2O]3− has been achieved with Et3SiH and PhSiMe2H. These are the first examples of hydrosilylation on a hybrid tungstophosphate core. The chromogenic behaviour of hybrid species has been demonstrated in solution.  相似文献   

13.
Cesium and tetraethylammonium salts of the ethynyl functionalized monocarba-closo-dodecaborate anions [12-HCC-closo-1-CB11H11] and [7,12-(HCC)2-closo-1-CB11H10] were obtained by desilylation of [Et4N][12-Me3SiCC-closo-1-CB11H11] and [Et4N][7,12-(Me3SiCC)2-closo-1-CB11H10], respectively. Their thermal properties were examined by differential scanning calorimetry. The compounds were characterized by multi-NMR, IR, and Raman spectroscopy, (−)-MALDI mass spectrometry, and elemental analysis. Single-crystals of Cs[12-HCC-closo-1-CB11H11] and [Et4N][7,12-(HCC)2-closo-1-CB11H10] were studied by X-ray diffraction. The discussion of the spectroscopic and structural properties is supported by data derived from theoretical calculations using density functional theory as well as perturbation theory.  相似文献   

14.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

15.
Diorganodiselenide [2-(Et2NCH2)C6H4]2Se2 (1) was obtained by hydrolysis/oxidation of the corresponding [2-(Et2NCH2)C6H4]SeLi derivative. The treatment of [2-(Et2NCH2)C6H4]2Se2 with elemental sodium in THF resulted in [2-(Et2NCH2)C6H4]SeNa (2). Reactions between alkali metal selenolates [2-(R2NCH2)C6H4]SeM′ (R = Me, Et; M′ = Li, Na) and MCl2 (M = Zn, Cd) in a 2:1 molar ratio resulted in the [2-(R2NCH2)C6H4Se]2M species [R = Me, M = Zn (3), Cd (4); R = Et, M = Zn (5), Cd (6)]. The new compounds were characterized by multinuclear NMR (1H, 13C, 77Se, 113Cd) and mass spectrometry. The crystal and molecular structures of 1, 3 and 4 revealed monomeric species stabilized by N → Se (for 1) and N → M (for 3 and 4) intramolecular interactions.  相似文献   

16.
The metal-metal bonds of the title compounds have been investigated with the help of energy decomposition analysis at the DFT/TZ2P level. In good agreement with experiment, computations yield Hg-Hg bond distance in [H3SiHg-HgSiH3] of 2.706 Å and Zn-Zn bond distance in [(η5-C5Me5)Zn-Zn(η5-C5Me5)] of 2.281 Å. The Cd-Cd bond distances are longer than the Hg-Hg bond distances. Bond dissociation energies (-BDE) for Zn-Zn bonds in zincocene −70.6 kcal/mol in [(η5-C5H5)2Zn2] and −70.3 kcal/mol in [(η5-C5Me5)2Zn2] are greater amongst the compounds under study. In addition, [(η5-C5H5)2M2] is found to have a binding energy slightly larger than those in [(η5-C5Me5)2M2]. The trend of the M-M bond dissociation energy for the substituents R shows for metals the order GeH3 < SiH3 < CH3 < C5Me5 < C5H5. Electrostatic forces between the metals are always attractive and they are strong (−75.8 to −110.5 kcal/mol). The results demonstrate clearly that the atomic partial charges cannot be taken as a measure of the electrostatic interactions between the atoms. The orbital interaction (covalent bonding) ΔEorb is always smaller than the electrostatic attraction ΔEelstat. The M-M bonding in [RM-M-R] (R = CH3, SiH3, GeH3, C5H5, C5Me5; M = Zn, Cd, Hg) has more than half ionic character (56-64%). The values of Pauli repulsions, ΔEPauli, electrostatic interactions, ΔEelstat, and orbital interactions, ΔEelstat are larger for mercury compounds as compared to zinc and cadmium.  相似文献   

17.
Nine organotin esters, Me2SnL21, Me3SnL 2, n-Bu2SnL23, n-Bu3SnL 4, Ph3SnL 5, (PhCH2)2SnL26, [(Me2SnL)2O]27, Et2SnL28 and n-Oct2SnL29, of (E)-3-(3-fluorophenyl)-2-(4-chlorophenyl)-2-propenoic acid, HL have been synthesized and characterized by elemental analysis, IR, Multinuclear NMR (1H, 13C and 119Sn) and mass spectrometry. The geometry around the tin atom has been deduced and compared both in solution and solid states. The crystal structure of compound 5 has been determined by X-ray single crystal analysis, which shows a tetrahedral geometry around the tin atom with space group . These compounds have also been screened for bactericidal, fungicidal activities and cytotoxicity data.  相似文献   

18.
Some localized singlet 1,3-σ-diradicals, C(MH2)3C, (M = Si, Ge, Sn, Pb) were theoretically designed by the orbital phase theory and density functional theory calculations. The bicyclic carbon-centered singlet diradicals were more stable than the lowest triplets. Except for M = C, σ-bonded isomers were not located for 1,3-σ-diradicals. 1,4-σ-diradicals, C(M2H4)3C, also had singlet ground states, but they were less stable than σ-bonded isomers.  相似文献   

19.
The first Pd(II) and Pt(II) complexes incorporating diselenophosphate (dsep) ligands are presented. Treatment of M(II) (M = Pd, Pt) salts with two equivalents of the dsep ligand in CH2Cl2 yielded square-planar compounds of the type M[Se2P(OR)2]2 (M = Pd, Pt; R = Et, iPr, nPr) (1a2c). These complexes were characterized by elemental analysis, multinuclear NMR spectroscopy and X-ray diffraction (1b and 2b). The dsep ligands coordinate to the metal in an approximately isobidentate fashion and form four-membered Se–P–Se–M chelate rings. Structural elucidations indicated that minute differences exist in the M–Se bond distances and these were observed from solution 31P NMR studies, which exhibited two sets of satellites arising from one-bond coupling to 77Se nuclei. A packing diagram showed a chain-like motif which was composed of square-planar M[Se2P(OR)2]2 units and occurred via non-covalent Se?Se secondary interactions.  相似文献   

20.
Reactions of [R3Sb(OPri)2] with N-heterocylic carboxylic acids gave compounds of the type [R3Sb(O2C-Ar)2] (1) (R = Me, Et, Pri, Ph; Ar = 2-C5H4N, 2-C9H6N). The mono-bromo compound [Me3Sb(Br)(O2C-C5H4N)] (2) exists in equilibrium with [Me3Sb(O2C-C5H4N)2] and [Me3SbBr2]. All new compounds have been characterized by IR and NMR (1H and 13C{1H}) spectral data. X-ray structural analysis of one example, [Me3Sb(O2C-C5H4N)2], isolated as its monohydrate, revealed an essentially trigonal bipyramidal geometry for the antimony atom defined by three equilaterally disposed methyl groups and two oxygen atoms from monodentate carboxylate groups, in apical positions. The crystal structure is consolidated into a three-dimensional network by cooperative O-H?O, O-H?N and C-H?O interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号