首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reactions of three alkynes, namely, 1‐heptyne, 3‐hexyne and 1‐phenyl‐1‐butyne, with [Rh4(CO)9(μ‐CO)3] are performed in anhydrous hexane under argon atmosphere with multiple perturbations of alkynes and [Rh4(CO)9(μ‐CO)3]. The reactions are monitored by in situ UV/Vis spectroscopy, and the collected electronic spectra are further analyzed with the band‐target entropy minimization (BTEM) family of algorithms to reconstruct the pure component spectra. Three BTEM estimates of [(μ4‐η2‐alkyne)Rh4(CO)8(μ‐CO)2], in addition to that of [Rh4(CO)9(μ‐CO)3], are successfully reconstructed from the experimental spectra. Time‐dependent density functional theory (TD‐DFT) predicted spectra at the PBE0/DGDZVP level are consistent with the corresponding BTEM estimates. The present study demonstrates that: 1) the BTEM family of algorithms is successful in analyzing multi‐component UV/Vis spectra and results in good spectral estimates of the trace organometallics present; and 2) the subsequent DFT/TD‐DFT methods provide an interpretation of the nature of the electronic excitation and can be used to predict the electronic spectra of similar transition organometallic complexes.  相似文献   

2.
The iridium and rhodium complexes [MCl(CO)2(NH2C6H4Me-4)] (M = Ir or Rh) react with [Os3(μ-H)2(CO)10] to give the tetranuclear clusters [MOs3(μ-H)2(μ-Cl)(CO)12]; the iridium compound being structurally identified by X-ray diffraction. Similarly, [IrCl(CO)2(NH2C6H4Me-4)] and [Rh2(μ-CO)2(η-C5Me5)2] afford the tetranuclear cluster [Ir2Rh2(μ-CO)(μ3-CO)2(CO)4(η-C5Me5)2], also characterised by single-crystal X-ray crystallog  相似文献   

3.
The reactions between the phosphine-organoiron [CpFeII6-C6Me5CH2PPh2]+ PF6? (1) and [RhCl(η4-diolefin)(μ-Cl)]2 in CH2Cl2 at reflux give the new heterobinuclear air-stable crystalline complexes [CpFeII6-C6Me5CH2)P(Ph)2Rh(η4-diene)Cl]PF6,(D'*-diene=cyclooctadiene (COD): 65%, 2; trimethylfluorobenzobicyclo[2.2.2]octadiene (Me3TFB): 48%, 3). Complexes 2 and 3 have been studied by 1H, 13C and 31P NMR spectroscopy and they are carbonylated (CO, 1 atm). Cyclic voltammetry experiments with addition of MeOH show electron transfer FeIRhI → FeIIRh0, the presence of a catalytic wave FeI/FeII and the possible formation of Rh hydrides. Under normal conditions 2 is a catalyst for hydrogenation of cyclohexene, but it is less efficient than the known mononuclear Rh1 analogues.  相似文献   

4.
The complexes (η-C5Me5)2Rh2(μ-CO) {μ-η22-C(O)CRCR} are obtained from reactions between (η-C5Me5)2Rh2(CO)2 and the alkynes RCCR (R  CF3, CO2Me, or Ph) at 25°C. The molecular geometry of the complex with R  CF3 has been established by X-ray diffraction; the bridging 'ene-one' unit adopts a μ-η22 conformation. Other complexes isolated from these reactions include (η-C5Me5)Rh(C6R6) (R  CF3, CO2Me), (η-C5Me)2Rh2(C4R4) (R  CO2Me) and (η-C5Me5)2Rh2(CO2C2R2) (R  Ph). The reaction between (η-C5Me5)2Rh2(CO)2 and C6F5CCC6F5 gives (η-C5Me5)2Rh2(CO)2(C6F5C2C6F5). Mononuclear complexes such as (η-C5Me5)Co(C4R4CO) are the major products isolated from reactions between (η-C5Me5)2CO2(CO)2 and alkynes at 25°C.  相似文献   

5.
The complexes [(η5-C5H5)Fe(CO)2(SCCR)] (R=tBu, SiMe3) have been obtained by reaction of [(η5-C5H5)Fe(CO)2I] and the corresponding LiSCCR. These are the first examples of mononuclear iron compounds containing alkynethiolate ligands. The crystal structure of [(η5-C5H5)Fe(CO)2(SCCSiMe3)] has been determined by X-ray diffraction. The role of [(η5-C5H5)Fe(CO)2(SCCSiMe3)] as a metalloligand in its reactions with metal carbonyls has been explored.  相似文献   

6.
Thermal reaction of the chloroaryl-chloride complexes trans-(η5-C5Me5)Re(CO)2(ArCl)Cl (ArCl = 3-ClC6H4, 3-ClC6H3(4-Me) and 3,5-Cl2C6H3) in acetonitrile did not interconvert to the cis isomer, instead the complex ReCl(CO)2(NCMe)3 and the corresponding 5-ArCl-1,2,3,4,5-pentamethylcyclopentadiene were formed. Similar reductive elimination products were obtained when the starting rhenium complexes were reacted with trimethylphosphite in toluene.  相似文献   

7.
Reaction of photogenerated (η5?C5H5)2W2(CO)4 with acetylene at 25°C yields a complex of the formula (η5-C5H5)2W2(CO)4(C2H2). The crystal structure of the complex shows it to have a tetrahedrane-like W2C2 core. The C—C bond distance of the C2H2 unit is 1.33 Å which is close to that of ethylene, considerably longer than the 1.20 Å for acetylenes. The W—W distance is 2.987 Å which is ~0.25 Å shorter than the W—W distance in (η5-C5H5)2W2(CO)6 but longer than that expected for (η5-C5H5)2W2(CO)4. By analogy to the parent (η5-C5H5)2M2(CO)6 species, the near-UV absorption in (η5-C5H5)2M2(CO)4(C2H2) is assigned to a σb → σ* transition. Owing to the shorter M—M bond in the C2H2 adducts, the σb → σ* absorption is at higher energy than in the (η5-C5H5)2M2(CO)6 complexes.  相似文献   

8.
When solutions of (η-C5H5)2Rh2(CO)(CF3C2CF3) and [Rh(CO)2Cl]2 in hexane are mixed and left at room temperature, black crystals of the condensation product (η-C5H5)2Rh4(CO)4Cl2(CF3C2CF3) are deposited. X-ray structure determination shows that one rhodium atom of the [Rh(CO)2Cl]2 dimer has added to the RhRh bond of (η-C5H5)2Rh2(CO)(CF3C2CF3) to form a triangular Rh3 cluster. This is capped on one side by a semi-face bridging carbonyl and on the other by a μ3η2 bound alkyne. Variable temperature NMR data reveal that two isomers of the complex co-exist in solution and that they rapidly interconvert at room temperature. In similar reactions between (η-C5H5)2Rh2(CO)(CF3C2CF3) and Pt(COD)2 in hexane at room temperature, there is loss of cyclooctadine and the formation of two cluster products. One is formulated as (η-C5H5)2Rh2Pt(COD)(CF3C2CF3) and the other as (η-C5H5)4Rh4Pt(CO)2(CF3C2CF3)2. Determination of the X-ray crystal structure of the latter establishes that the Pt is a common apex for two linked Rh2Pt triangles. Within each Rh2Pt unit, a semi-bridging carbonyl spans one Rh-Rh edge, and the hexaluorobut-2-yne occupies a μ3η2 face bridging position.  相似文献   

9.
The compound Mo(η-C5H4(CH2)2SPrn)2(SPrn)2 acts as a bidentate ligand giving the heteronuclear bi-metallic compounds [Mo(η-C5H4CH2CH2SPrn)2-(SPrn)2(PtCl2)],[Mo(η-C5H4CH2CH2SPrn)2(SPrn)2(PdCl2)2], [Mo(η-C5C4CH2CH2SPrn)2(SPrn)2(RhCl3)2], [Mo(η-C5H4CH2CH2SPrn)2(μ-SPrn)2Rh(dppe)]BF4, [Mo(η-C5H4CH2CH2SPrn)2(μ-SPrn)2(COD)Rh]Cl, [Mo(η-C5H4CH2CH2SPrn)2-(μ-SPrn)2Pt(PPh3)2](PF6)2, and the compound [Mo(η-C5H4(CH2)2-μ-SPh)2Cl2Rh(COD)]Cl bonds via the ring-sulphur substituents giving [Mo(η-C5H4(CH2)2-μ-SPh)2-Cl2Rh(COD)]Cl.  相似文献   

10.
The versatile reagent [η5-C5H5)Fe(CO)2(THF)]BF4 has been isolated from the reaction of (η5-C5H5)Fe(CO)2I and AgBF4 in THF and shown to react in CH2Cl2 with olefins to yield [(η5-C5H5)Fe(CO)22-olefin)]BF4 complexes. For most olefins the yields are high. The yield in these reactions can be increased by treating the CH2Cl2 solution of [(η5-C5H5)Fe(Co)2(THF)]BF4 and olefin with gaseous BF3 in order to complex the THF as the BF3-THF adduct. Most striking is the increase in yield for the cyclohexene complex from 17% to 92%.  相似文献   

11.
Ph2P(O)C(S)N(H)R (R  Me, Ph) reacts with M(CO)35-C5H5)Cl (M  Mo, W) in the presence of Et3N to give M(CO)25-C5H5)(Ph2P(O)C(S)NR). The deprotonated ligand coordinates in a bidentate manner through N and S to give a four-membered ring system. M(CO)3(PPh3)2Cl2 (M  Mo, W) reacts with Ph2P(O)C(S)N(H)R (R  Me, Ph) in the presence of Et3N to give complexes in which the central metal atoms are seven coordinate through two ligands bonded via O and S to form five-membered ring systems, one PPh3, and two CO groups. The complexes were characterised by elemental analyses, IR, 1H NMR, and 31P NMR spectroscopy, and an X-ray structural analysis of Mo(CO)2(PPh3)(Ph2P(O)C(S)NPh)2 · CH2Cl2.  相似文献   

12.
The compounds (η5-C5R5)2Fe2(CO)2(μ-CO)(μ-CH2) (R = H, CH3) have been prepared through the reaction of chloromethyl pivalate with the appropriate metal anions, η5-C5H5Fe(CO)2K and η5-C5Me5Fe(CO)2K.  相似文献   

13.
[Rh(η5-C5H5)(C3S5)] and [Rh(η5-C5Me5)(C3S5)]2 [C3S52−=4,5-disulfanyl-1,3-dithiole-2-thionate(2-)] were prepared by reactions of [NMe4]2[C3S5] with [Rh(η5-C5H5)Cl2]2 and [Rh(η5-C5Me5)Cl2]2, respectively. Their X-ray crystal structural analyses revealed a monomeric form for the former complex and a dimeric geometry containing bridging S-Rh-S bonds for the latter in the solid state. They were reacted with bromine to afford [RhBr(L)(C3S5)] (L=η5-C5H5 and η5-C5Me5) with the Rh-Br bond and one electron-oxidation on the C3S5 ligand. ESR spectra and spin densities for these oxidized species are discussed.  相似文献   

14.
It is shown that electrode catalysis of substitution reactions can operate even for systems with rather slow chemical steps and, furthermore, for those which are electrochemically irreversible. A procedure is described for synthesis of Fe(CO)(PPh3)(η5-C5H5)COCH3 from Fe(CO)25-C5H5)CH3 and triphenylphosphine. A simplified mechanism for the catalytic chain, is given and discussed in terms of the structure of the reacting species.  相似文献   

15.
Complexes of formula (η-C5H52Rh2{CF3C2CF3 · RNCO} have been prepared by three methods, from reactions between organic isocyanates and (η-C5H5)2Rh2(CO)(CF3C2CF3) or (η-C5H5)2Rh2(CO)2(CF3C2CF3); by treatment of (η-C5H5)2Rh2(CO)(CF3C2CF3) with organic azides; and by oxidation with Me3NO of the organic isocyanide in (η-C5H5)2Rh2(CO)(CNR)(CF3C2CF3). The crystal and molecular structure of the complex (η-C5H5)2Rh2{CF3C2CF3 · RNCO} with R = Ph has been determined from single crystal X-ray diffraction data. This reveals that the isocyanate has condensed with the hexafluorobut-2-yne to form an amide ligand of the form C(CF3)C(CF3)C(=O)N(R); this bridges the two rhodium atoms in a μ2η3-manner.  相似文献   

16.
The anionic rhodium carbonyl clusters [Rh7(CO)16]3− and [Rh14(CO)25]4− can be easily prepared by a new simple and high yield one-pot synthesis starting from RhCl3·nH2O dissolved in ethylene glycol and involving two steps: (i) treatment of RhCl3·nH2O under 1 atm of CO at 50 °C to give [Rh(CO)2Cl2]; (ii) addition of a base (CH3CO2Na or Na2CO3) followed by reductive carbonylation under 1 atm of CO at an adequate temperature (50 °C for [Rh7(CO)16]3−; 150 °C for [Rh14(CO)25]4−). These new syntheses are more convenient than those previously reported, especially since such clusters are not accessible via silica surface-mediated reactions. This different behavior is due to the particular stabilization on the silica surface and under 1 atm of CO of an anionic carbonyl cluster, called A, which does not allow the formation of a higher nuclearity carbonyl cluster, called B, which was shown to be the key-intermediate in the synthesis of [Rh14(CO)25]4− working in ethylene glycol solution. Although it was not possible to isolate crystals of A and B suitable for X-ray structural determination, a combination of cyclovoltammetry, one of the few examples so far available of the use of this technique for anionic rhodium carbonyl clusters, infrared spectroscopy and elemental analyses suggest that A and B are probably the never reported [Rh7(CO)14] and [Rh15(CO)28]3− clusters, respectively. In particular the tentative formulation of the two clusters was carried out by a non-conventional method based on the existence of a linear correlation between carbonyl frequencies of the main band and the [(charge/Rh atoms)/CO number] ratio.  相似文献   

17.
The photoreaction of (η-C5H5)2TaH3 with Mn2(CO)10 gives, inter alia, (η-C5H5)2(CO)Ta(μ-H)Mn2(CO)9, whose crystal structure reveals an open, bent trimetallic framework. Preliminary mechanistic studies show that this and the analogous niobium reaction proceed via a complex sequence of thermal steps following photoinitiation.  相似文献   

18.
Syntheses of the complexes trans-[PtCl2(PR3)Mo2(CO)45-C5H5)2(tBuCP)], (PR3=PEt3, PPr3, PBu3, PPh2Me, PPhMe2) trans-[PdCl2(PBu3)Mo2(CO)45-C5H5)2(tBuCP)], and trans[RhCl{(PF2NMe)2CO}Mo2(CO)45-C5H5)2(tBuCP)] are described and their 31P NMR spectra presented and discussed.  相似文献   

19.
The clusters [Ru4(μ-CO)(CO)1041212-C5H6)2] (1), [Ru4(CO)8441113-C10H12)(μ3321-C5H6)] (2) and [Ru4(CO)10441131-C15H16)] (3) have been prepared from the reaction of [H4Ru4(CO)12] with 1-penten-3-yne. This reaction is observed to proceed with dimerization and trimerization through the triple bonds. The products were characterized spectroscopically by 1H- and 13C-NMR. X-ray crystal structures of compounds 1 and 2 are also described.  相似文献   

20.
Experimental evidence that the dinuclear complex Me2Si[η5-C5H4Fe(CO)2-(η1-CH2C6H5)]2 shows enhanced reactivity over its mononuclear analogy η5-C5H5Fe(CO)21-CH2C6H5 in photogragmentation to produce bibenzyl and FeFe bonded product is presented. Information from a series of competition and crossover experiments indicate that two factors are involved in the enhancement: (1) the ability to photochemically produce a 16-electron unsaturated benzyl unit in close proximity to a saturated partner, and (2) the inability of the FeFe bonded species 4 to quench free benzyl radicals in solution. Chemical reaction of Me2Si[η5-C5H4Fe(CO)21-CH2C6H5)]2 with Me3NO produces bibenzyl and establishes that loss of CO is the initial step in the fragmentation reaction. In addition, trapping experiments with 9,10-dihydroanthracene show that bibenzyl is formed from free benzyl radical; BBased on these results an overall mechanism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号