首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of Sn[(N(C6H3iPr2-2,6)(SiMe3)]2 and [{Sn(N(C6H3iPr2-2,6)(SiMe3)(μ-Cl)2] with di-n-butyl-dicyclopentadienylzirconium yielded the trimetallic a carbene-like complex {[(N(C6H3iPr2-2,6)(SiMe3)](n-Bu)Sn}2Cp2Zr. The oxidation of {[(N(C6H3iPr2-2,6)(SiMe3)](n-Bu)Sn}2Cp2Zr by oxygen gives the five-membered dioxadistannazirconacyclic complex {[(N(C6H3iPr2-2,6)(SiMe3)](n-Bu)Sn}2O2Cp2Zr.  相似文献   

2.
《Journal of fluorine chemistry》2007,128(11):1390-1395
The tin atom in the solid-state structure of {2-[(CH3)2NCH2]C6H4}nBu2SnF is five coordinated with carbon atoms in equatorial and fluorine and nitrogen atoms in axial positions. The fluorination of {2-[(CH3)2NCH2]C6H4}nBuSnCl2 is described by NMR methods. The successful attempts to fluorinate various chlorosilanes, chlorophosphine and metal halides are also reported.  相似文献   

3.
A study has been made of reactions involving organometallic compounds containing ortho-Me2NCH2 substituted aryl ligands. The single step syntheses of the new compounds [(2-Me2NCH2C6H4)2TlCl], [ [{(S)-2-Me2NCH(Me)C6H4}2TlCl], [{(S)-2-Me2NCH(Me)C6H4}TlCl2], [{2,6-(Me2NCH2)2C6H3}TlClBr] and [{2,6-(Me2NCH2)2C6H3}HgCl] are described. Stable internal NTl coordination at low temperatures has been established for the C-chiral thallium compounds. Reactions of the other Tl and Hg compounds and of [(2-Me2NCH2C6H4)2Hg] with Pd(O2CMe)2, and also of the reverse reaction of cis-[(2-Me2NCH2C6H4)2Pd] with Hg(O2CR)2 or Tl(O2CR)3, gave transmetallation of one organo ligand and led to a single mono-organopalladium compound and corresponding by-products. Reaction of cis-[(2-Me2NCH2C6H4)2Pd] with Pd(O2CR)2 gave the dimeric compound [{(2-Me2NCH2C6H4)Pd(O2CR)}2]. cis-[(2-Me2NCH2C6H4)2Pt] did not react with Pd(O2CMe)2, while reaction of trans-[(2-Me2NCH2C6H4)2Pt] or cis-[(2-Me2NC6H4CH2)2Pt] with Pd(O2CMe)2 resulted in decomposition. Upon heating, trans-[(2-Me2NCH2C6H4)2Pt] was isomerized to cis-isomer. A redox reaction between [(2-Me2NCH2C6H4)2Hg] and [Pt(COD)2] (COD  1,5-cyclo-octadiene) and [Pd2(DBA)3] (DBA  dibenzylideneacetone) gave the cis-isomers of [(2-Me2NCH2C6H4)2M] (M  Pd, Pt).The results are discussed in terms of influence of internal coordination of the CH2NMe2 group. It is concluded that although internal coordination of the CH2NMe2 ligand can stabilize metal—carbon bonds it cannot prevent cleavage of such bonds by electrophiles. In this respect, there is no difference in the behaviour of Hg(O2CR)2 and Tl(O2CR)3. The reactions are influenced by the metal—nitrogen bond strength, which follows the order PtN > PdN > HgN, TlN. The reactivity of Pt compounds is greatly influenced by their structure and type of ligand. It is proposed that cleavege of PdC bonds occurs mainly by a mechanism involving direct electrophilic attack at the carbon centre.  相似文献   

4.
The set of four triorganotin(IV) diesters of 4‐ketopimelic acid containing {2‐[(CH3)2NCH2]C6H4}‐ as a C,N‐chelating ligand was prepared. Their structures were studied by the help of IR, NMR and X‐ray crystallographic techniques in the case of {{2‐[(CH3)2NCH2]C6H4}SnPh2}2[(OOCCH2CH2)2C?]. All these compounds are monomeric both in solid state and solution with five‐coordinated tin atoms and medium strong intramolecular Sn? N connection. The antimycotical activity of these compound was studied and compared with the triorganotin(IV) derivatives of 4‐ketopimelic acid and antimycotical drugs in clinical use. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The intramolecularly coordinated heteroleptic stannylene [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2]SnCl serves as synthon for the synthesis of the ferrocenyl-bridged bis(diorganostannylene) [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2SnC5H4]2Fe (1) which in turn reacts with W(CO)6 and Cr(CO)4(C7H8) to provide the corresponding transition metal complexes [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2Sn{W(CO)5}C5H4]2Fe (2) and [4-t-Bu-2,6-{P(O)(O-i-Pr)2}2C6H2SnC5H4]2Fe · Cr(CO)4 (3), respectively. Reaction of compound 1 with sulphur and atmospheric moisture gave, under partial tin-carbon and oxygen-carbon bond cleavage, a tetranuclear organotin-oxothio cluster 5. All compounds were characterized by 1H, 13C, 31P, and 119Sn NMR, and IR spectroscopy, as well as by single-crystal X-ray diffraction analysis. Compounds 1 and 3 were also investigated by Mössbauer spectroscopy. Cyclovoltametric studies reveal the influence of the organostannyl moieties on the redox-behaviour of compounds 1-3 in comparison with unsubstituted ferrocene.  相似文献   

6.
{2‐(N,N‐Dimethylaminomethyl)phenyl}(di‐t‐butyl)tin(IV)chloride, {2‐[(CH3)2NCH2]C6H4}Sn(t‐Bu)2 Cl, has been prepared and characterized using NMR and crystallography. This is the first example of a triorganotin(IV) halide containing the 2‐[(CH3)2NCH2]C6H4—group as a C,N‐chelating ligand with a weak intramolecular Sn—N interaction because of the steric hindrance of t‐butyl groups. The interatomic Sn—N distance is elongated to 2.904(14) Å and the central tin atom is distorted trigonal bipyramidal. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Complexes [{2,6-(Me2NCH2)2C6H3} (p-tolylNYNR)PtHgBrCl] (Y  CH, N; R  Me, Et, i-Pr) have been prepared by the reaction of [{2,6-(Me2NCH2)2C6H3}-PtBr] with [Hg(p-tolylNYNR)Cl]. Similar complexes were obtained, although in lower yields, from exchange reactions of [{2,6-(Me2NCH2)2C6H3} (RCO2)-PtHg(O2CR)Br] with p-tolylNNN(H)-p-tolyl and p-tolylNC(H)N(H)Et.The proposed structure for these heterodinuclear compounds involves a Pt-to-Hg donor bond which is bridged by a triazenido (Y  N) or a formamidino (Y  CH) group, the five-membered ring thus formed acting as a stabilizing factor. The absence of a subsequent electron transfer reaction is ascribed to the constraints of the terdentate 2,6-(Me2NCH2)2C6H3 ligand, which fixes the N-donor atoms in mutual trans-positions.The use of p-tolylNYNR, where R is an alkyl group, results in the formation of two isomers of [{2,6-(Me2NCH2)2C6H3} (p-tolylNYNR)PtHgBrCl] with p-tolyl-N and alkyl-N sites bonded either to Pt or Hg. The relative abundance of these isomers varies systematically with the nature of the group R. It is suggested that the ratio is determined during the formation of the complexes and that both steric and electronic factors are important.  相似文献   

8.
The reaction of the dianionic derivative [DADLi2] (DAD is 1,4-bis(2,6-diisopropylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-diene), which was synthesized in situ by reduction of the corresponding DAD with an excess of metallic lithium in THF, with anhydrous LuCl3 (1: 1) affords the metallacyclic complex {[(Me)CNC6H3Pri 2]2}Lu(THF)2(μ-Cl)2Li(THF)2 (1) containing the enediamide fragment N-C(Me)=C(Me)-N. The treatment of DAD with 2 equiv. of BuLi in a diethyl ether-hexane mixture at 20 °C results in the C-H bond activation of the methyl substituents at the imine carbon atom. The reaction of the in situ formed dilithium derivative [DAD?2HLi2] with LuCl3 in THF afforded the complex {[(CH2)CNC6H3Pri 2]2}-Lu(THF)2(μ-Cl)2Li(THF)2 (2) with the diamide ligand N-C(=CH2)-C(=CH2)-N. The structures of complexes 1 and 2 were established by X-ray diffraction.  相似文献   

9.
Interesting varieties of heterobimetallic mixed-ligand complexes [Zr{M(OPri) n }2 (L)] (where M = Al, n = 4, L = OC6H4CH = NCH2CH2O (1); M = Nb, n = 6, L = OC6H4CH = NCH2CH2O (2); M = Al, n = 4, L = OC10H6CH = NCH2CH2O (3); M = Nb, n = 6, L = OC10H6CH = NCH2CH2O (4)), [Zr{Al(OPri)4}2Cl(OAr)] (where Ar = C6H3Me2-2,5 (5); Ar = C6H2Me-4-Bu2-2,6 (6), [Zr{Al(OPri)4}2(OAr)2] (where Ar = C6H3Me2-2,5 (7); Ar = C6H2Me-4-Bu2-2,6 (8), [Zr{Al(OPri)4}3(OAr)] (where Ar = C6H3Me2-2,5 (9); Ar = C6H3Me2-2,6 (10), [ZrAl(OPri)7-n (ON=CMe2) n ] (where n = 4 (11); n = 7 (12), [ZrAl2(OPri)10-n (ON=CMe2) n ] (where n = 4 (13); n = 6 (14); n = 10 (15) and [Zr{Al(OPri)4}2{ON=CMe(R)} n Cl2–n] [where n = 1, R = Me (16); n = 2, R = Me (17); n = 1, R = Et (18); n = 2, R = Et (19)] have been prepared either by the salt elimination method or by alkoxide-ligand exchange. All of these heterobimetallic complexes have been characterized by elemental analyses, molecular weight measurements, and spectroscopic (I.r., 1H-, and 27Al- n.m.r.) studies.  相似文献   

10.
The stannylene {2-[(CH3)2NCH2]C6H4}2Sn (1) was reacted with oxygen, sulfur, selenium, tellurium, and carbon disulfide. The reactions with heavier chalcogens led to the rapid formation of 1:1 dinuclear adducts which were characterized by elemental analysis, ESI-MS measurements, 1H NMR spectroscopy, and structurally characterized by X-ray diffraction (in the case of reaction products with S8 (3) and Te (5)). The reaction of 1 with carbon disulfide and elemental sulfur yields the remarkable compound {{2-[(CH3)2NCH2]2C6H4}Sn}22-S2CCS2) (3a). The stability and reactivity of compounds 1-5 were rationalized at DFT/TZ2P level.  相似文献   

11.
The syntheses of the transition metal complexes cis‐[(4‐tBu‐2,6‐{P(O)(OiPr)2}2C6H2SnCl)2MX2] ( 1 , M=Pd, X=Cl; 2 , M=Pd, X=Br; 3 , M=Pd, X=I; 4 , M=Pt, X=Cl), cis‐[{2,6‐(Me2NCH2)2C6H3SnCl}2MX2] ( 5 , M=Pd, X=I; 6 , M=Pt, X=Cl), trans‐[{2,6‐(Me2NCH2)2C6H3SnI}2PtI2] ( 7 ) and trans‐[(4‐tBu‐2,6‐{P(O)(OiPr)2}2 C6H2SnCl)PdI2]2 ( 8 ) are reported. Also reported is the serendipitous formation of the unprecedented complexes trans‐[(4‐tBu‐2,6‐{P(O)(OiPr)2}2C6H2SnCl)2 Pt(SnCl3)2] ( 10 ) and [(4‐tBu‐2,6‐{P(O) (OiPr)2}2C6H2SnCl)3Pt(SnCl3)2] ( 11 ). The compounds were characterised by elemental analyses, 1H, 13C, 31P, 119Sn and 195Pt NMR spectroscopy, single‐crystal X‐ray diffraction analysis, UV/Vis spectroscopy and, in the cases of compounds 1 , 3 and 4 , also by Mössbauer spectroscopy. All the compounds show the tin atoms in a distorted trigonal‐bipyramidal environment. The Mössbauer spectra suggest the tin atoms to be present in the oxidation state III. The kinetic lability of the complexes was studied by redistribution reactions between compounds 1 and 3 as well as between 1 and cis‐[{2,6‐(Me2NCH2)2C6H3SnCl}2PdCl2]. DFT calculations provided insights into both the bonding situation of the compounds and the energy difference between the cis and trans isomers. The latter is influenced by the donor strength of the pincer‐type ligands.  相似文献   

12.
The phosphines L1PPh2 (1) and L2PPh2 (2) containing different Y,C,Y‐chelating ligands, L1 = 2,6‐(tBuOCH2)2C6H3? and L2 = 2,6‐(Me2NCH2)2C6H3?, were treated with PdCl2 and di‐µ‐chloro‐bis[2‐[(N,N‐dimethylamino)methyl]phenyl‐C,N]‐dipalladium(II) and yielded complexes trans‐{[2,6‐(tBuOCH2)2C6H3]PPh2}2PdCl2 (3), {[2,6‐(Me2NCH2)2C6H3]PPh2} PdCl2 (4), {[2,6‐(tBuOCH2)2C6H3]PPh2}Pd(Cl)[2‐(Me2NCH2)C6H4] (5) and {[2,6‐(Me2NCH2)2C6H3]PPh2}Pd(Cl)[2‐(Me2NCH2)C6H4] (6) as the result of different ability of starting phosphines 1 and 2 to complex PdCl2. Compounds 3–6 were characterized by 1H, 13C, 31P NMR spectroscopy and ESI‐MS. The molecular structures of 3,4 and 6 were also determined by X‐ray diffraction analysis. The catalytic activity of complexes 3–6 was evaluated in the Suzuki‐Miyaura cross‐coupling reaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The reaction of 2,6-(2-{Me2NCH2}C6H4)2C6H3I (2) with Pd2(dba)3 produced the NCN diamine pincer complex [2,6-(2-Me2{NCH2}C6H4)2C6H3PdI] (3) by an oxidative addition route. The structural analysis of ligand precursor 2 revealed a syn-conformation in the solid state. Single crystal X-ray analysis of complex 3 revealed a conventional square planar geometry about the palladium center and a global C2 symmetric structure. Variable temperature and concentration NMR spectroscopic studies of complex 3 suggest an equilibrium between 3 and the dinuclear species [{2,6-(2-{Me2NCH2}C6H4)2C6H3Pd}2μ2-I]I in CDCl3 solution. An unusual carbonate complex [{2,6-(2-{Me2NCH2}C6H4)2C6H3Pd}3μ3-CO3]I3 (4) was also structurally characterized as a minor product during synthesis of 3.  相似文献   

14.
A reaction of anhydrous yttrium chloride with an equimolar amount of lithium amidinateamidopyridinate obtained in situ by metallation of N,N’-bis(2,6-dimethylphenyl)-N-{6-[(2,6-dimethylphenyl)amino]pyridin-2-yl}acetimidamide ((2,6-Me2C6H3)NH(2,6-C6H3N)N(2,6-Me2C6H3)C(Me)=N(2,6-Me2C6H3), L1H) (1) with n-butyllithium in THF at–70 °C was used to synthesize the yttrium dichloride complex (L1)YCl2(THF)2 (2). The lutetium bis(alkyl) complex, namely, N’-(2,6-diisopropylphenyl)-N-(2,6-dimethylphenyl-N-{6-[(2,6-dimethylphenyl)amido]pyridin-2-yl}acetimidoamidinatebis(trimethylsilylmethyl)lutetium (4), was obtained by the reaction of N’-(2,6-diisopropylphenyl)-N-(2,6-dimethylphenyl)-N-(6-((2,6dimethylphenyl)amino)pyridin-2-yl)acetimidamide ((2,6-Me2C6H3)NH(2,6-C6H3N)N-(2,6-Me2C6H3)C(Me)=N(2,6-Pr 2 i C6H3), L2H (3)) with an equimolar amount of Lu(CH2SiMe3)3(THF)2. Complex 4 was found to be very stable and did not show indications of C—H-activation and other kinds of disintegration in benzene or toluene solution even upon prolonged heating at 60 °C. The reaction of complex 4 with an equimolar amount of 2,6-diisopropylaniline in toluene solution at room temperature led to the formation of the lutetium alkyl-anilide complex (L2)Lu(CH2SiMe3)(NH-2,6-Pr 2 i C6H3) (5). A three-component system 4—AlBu 3 i —[X][B(C6F5)4] ([X] = [Ph3C], [PhNHMe2], the molar ratio of 1: 10: 1) was found to catalyze polymerization of isoprene.  相似文献   

15.
Arylselenium(II) derivatives of dithiophosphorus ligands of type ArSeSP(S)R2 [Ar = Ph, R = Ph (1), OPri (2); 2-[MeN(CH2CH2)2NCH2]C6H4, R = Ph (3), OPri (4); 2-[O(CH2CH2)2NCH2]C6H4, R = OPri (6)] were prepared by redistribution reactions between Ar2Se2 and [R2P(S)S]2. The derivative [2-{O(CH2CH2)2NCH2}C6H4]SeSP(S)Ph2 (5) was obtained by the salt metathesis reaction between [2-{O(CH2CH2)2NCH2}C6H4]SeCl and NH4S2PPh2. The compounds were investigated by multinuclear (1H, 13C, 31P, 77Se) NMR and infrared spectroscopy. The crystal and molecular structures of 1, 3, 4 and 6 were determined by single-crystal X-ray diffraction. In compounds 3, 4 and 6 the N(1) atom is intramolecularly coordinated to the selenium center, resulting in a T-shaped geometry (hypervalent 10-Se-3 species). The dithiophosphorus ligands act as anisobidentate in 1 and monodentate in 3, 4 and 6. Supramolecular architectures based on intermolecular S?H and N?H contacts between molecular units are formed in the hypervalent derivatives 3 and 4, while in the compounds 1 and 6 the molecules are associated into polymeric chains through either Se?S or O?H contacts, with no further inter-chain interactions.  相似文献   

16.
The new sodium bis(1-methyl-1H-imidazol-2-ylthio)acetate, Na[(S-tim)2CHCO2], has been prepared in ethanol solution using 2-mercapto-1-methylimidazole, dibromoacetic acid and NaOH. New di- and tri-organotin(IV) derivatives have been synthesized from reaction between SnRnCl4−n (R = Ph, Cy and nBu, n = 2-3) acceptors and Na[(S-tim)2CHCO2]. Complexes of the type {[κ1O-(S-tim)2CHCO2]SnR3} and related decarboxylated species {[κ2N,N-(S-tim)2CH2]SnR2Cl2} have been obtained and characterized by elemental analyses, FT-IR, ESIMS and multinuclear (1H, 13C and 119Sn) NMR spectral data. The adduct {κ1O-[(S-tim)2CHCO2]Sn(H2O)(C4H9)3} was characterized by single crystal X-ray studies. The dichloromethane reaction solution of {κ1O-[(S-tim)2CHCO2]Sn(C6H5)3} was re-crystallized and the decarboxylated species {[(S-tim)2CH2]SnCl(H2O)(C6H5)3} was obtained as a crystalline solid and characterized by X-ray crystallography.  相似文献   

17.
A 18-electron complex CpIrCl[o-C6H4N(C6H3-Me-p) (CHNC6H3-Me-p)] (Cp = η5-pentamethylcyclopentadienyl) (1a) was obtained by the reaction of the lithium salt of o-C6H4N (C6H3-Me-p)(CHNHC6H3-Me-p) (L1) with [CpIrCl(μ-Cl)]2 in toluene. However, when bulkier ligands (L2 = o-C6H4N(C6H3-Me-p)(CHNHC6H3-i-Me2-2,6), L3 = o-C6H4N(C6H3-Me-p) (CHNHC6H3-i-Pr2-2,6)) were employed in the same reaction, two 16-electron complexes {CpIr[o-C6H4N(C6H3-Me-p)(CHNC6H3-i-Me2-2,6)]}+Cl (2b) and {CpIr[o-C6H4N(C6H3-Me-p)(CHNC6H3-i-Pr2-2,6)]}+Cl (3b) were formed. A 16-electron complex {CpIr [o-C6H4N(C6H3-Me-p) (CHNC6H3-Me-p)]}+SO3 CF3 (1b) bearing L1 could be achieved by the reaction of 1a with AgSO3CF3 in CH3CN solution. The molecular structures of 1a and 2b were determined by X-ray crystallography. Theoretical calculations of all the 18/16-electron species were performed to study their bonding characters and electronic properties. Electron donating effect of Cp and steric effect of anilido-imine ligand were considered as major factors in the formation of coordinative unsaturated complexes 1b, 2b, 3b.  相似文献   

18.
The fluorination of [MeAlN(2,6-i-Pr2C6H3)]31 using 1 and 2 eq., respectively, trimethyltin fluoride leads to the mono- and difluoro compounds, [FAl(MeAl)2(N(2,6-i-Pr2C6H3))3]·2THF 2 and [(FAl)2MeAl(N(2,6-i-Pr2C6H3))3]·3THF 3, where each methyl group can be selectively exchanged for terminal fluorine atoms (AlF). The reaction of 1 and 3 eq. of trimethyltin fluoride leads to the trifluoro compound [FAlN(2,6-i-Pr2C6H3)]3·3THF 4 and [Me2SnN(2,6-i-Pr2C6H3)]25 as a by-product. The core of compound 5 consists of a tin-nitrogen four-membered Sn2N2 ring.  相似文献   

19.
Large bite bisphosphite ligand, 2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2 (2), is obtained by reacting chlorophosphite, {-OC10H6(μ-S)C10H6O-}PCl (1) with 2,6-pyridinedimethanol in presence of triethylamine.Treatment of 2 with aqueous solution of H2O2 or elemental sulfur resulted in the formation of bis(oxide) or bis(sulfide) derivatives, 2,6-C5H3N{CH2OP(E)(-OC10H6)(μ-S)(C10H6O-)}2 (3, E = O; 4, E = S) in quantitative yield.The 10-membered cationic chelate complex, [RuCl(η6-C10H142-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP]Cl (5) is produced in the reaction between [Ru(p-cymene)(μ-Cl)(Cl)]2 and bisphosphite 2, whereas the neutral chelate complex, cis-[Rh(CO)Cl{2,6-C5H3N{CH2OP(-OC10H6(μ-S)C10H6O-)}2}-κPP] (6) is isolated in the reaction of 2 with 0.5 equiv.of [Rh(CO)2Cl]2.Compound 2 on treatment with M(COD)Cl2 (M = Pd, Pt) produce the chelate complexes, [MCl22-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2}-κPP] (7, M = Pd;10, M = Pt).Similarly the reaction of bisphosphite 2 with Pd(COD)MeCl affords cis-[PdMe(Cl)η2-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP] (8).Treatment of 2 with [Pd(η3- C3H5)Cl]2 in the presence of AgClO4 furnish the cationic complex, [Pd(η3-C3H52-2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2PP]ClO4 (9). The binuclear complex, [Au2Cl2{2,6-C5H3N{CH2OP(-OC10H6)(μ-S)(C10H6O-)}2}-κPP] (11) is obtained in the reaction of compound 2 with two equiv. of AuCl(SMe2), where the ligand exhibits bridged bidentate mode of coordination. All the complexes are characterized by the 1H NMR, 31P NMR, elemental analysis and mass spectroscopy data. The cationic ruthenium complex 5 is proved to be an active catalyst for the hydrogenation of styrene and α-methyl styrene.  相似文献   

20.
The organoantimony(III) difluorides containing Y,C,Y-chelating, so called pincer, ligands ([2,6-(YCH2)2C6H3]SbF2; Y = MeO, t-BuO and Me2N) were prepared by the reaction of corresponding dichlorides ([2,6-(YCH2)2C6H3]SbCl2; Y = MeO, t-BuO and Me2N) with two equivalents of organotin(IV) fluorinating agents Me3SnF or 2-(Me2NCH2)C6H4Sn(n-Bu2)F, respectively. The structure of organonantimony fluorides was determined both in solution by 1H, 13C and 19F NMR spectroscopy and in the solid state using X-ray diffraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号