首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel functionalized triphenylantimony(V) catecholates - Ph3Sb[4-O(CH2CH2)2N-3,6-DBCat] (1), Ph3Sb[4-PhN(CH2CH2)2N-3,6-DBCat] (2), Ph3Sb[4-Ph2CHN(CH2CH2)2N-3,6-DBCat] (3), Ph3Sb[4,5-Piperaz-3,6-DBCat] (4) and binuclear bis-catecholate Ph3Sb[3,6-DBCat-4-N(CH2CH2)2N-4-3,6-DBCat]SbPh3 (5) were synthesized by the oxidative addition reaction of corresponding o-quinones with triphenylantimony. The [4-O(CH2CH2)2N-3,6-DBCat]2−, [4-PhN(CH2CH2)2N-3,6-DBCat]2−, [4-Ph2CHN(CH2CH2)2N-3,6-DBCat]2− and [4,5-Piperaz-3,6-DBCat]2− are 4-(morpholin-1-yl)-, 4-(4-phenyl-piperazin-1-yl)-, 4-(4-dephenylmethyl-piperazin-1-yl)-, and 4,5-(piperazin-1,4-diyl)-3,6-di-tert-butyl-catecholate dianionic ligands, correspondingly. Complexes 1-5 were characterized in details by IR-, 1H and 13C NMR spectroscopy and cyclic voltammometry. Molecular structure of 4·CH3OH was determined by X-ray crystallography to be a distorted tetragonal-pyramidal. The NMR spectroscopic and electrochemical investigations of complexes in the presence of air reveal the reactions of complexes with dioxygen leading to the formation of spiroendoperoxides of 1,2,4,3-trioxastibolane type in a NMR yield of 25-37%.  相似文献   

2.
Reaction of 2-benzoylpyridine thiosemicarbazone (H2Bz4DH, HL1) and its N(4)-methyl (H2Bz4Me, HL2) and N(4)-phenyl (H2Bz4Ph, HL3) derivatives with SnCl4 and diphenyltin dichloride (Ph2SnCl2) gave [Sn(L1)Cl3] (1), [Sn(L1)PhCl2] (2), [Sn(L2)Cl3] (3), (4) [Sn(L3)PhCl2] (5) and [Sn(L3)Ph2Cl] (6). Infrared and 1H, 13C and 119Sn NMR spectra of 1-3, 5 and 6 are compatible with the presence of an anionic ligand attached to the metal through the Npy-N-S chelating system and formation of hexacoordinated tin complexes. The crystal structures of 1-3, 5 and 6 show that the geometry around the metal is a distorted octahedron formed by the thiosemicarbazone and either chlorides or chlorides and phenyl groups. The crystal structure of 4 reveals the presence of and trans [Ph2SnCl4]2−.  相似文献   

3.
The synthesis and crystal structures of 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-thione, (R3Sn)2(dmit), 1, and 4,5-bis[(triorganotin)thiolato]-1,3-dithiole-2-one, (R3Sn)2(dmio), 2, compounds are reported. Compounds, (1 or 2: R = Ph or cyclohexyl, Cy), have been obtained from reaction of R3SnCl with Cs2dmit or Na2dmio. The presence of the two tin centres in (2: R = Ph) is shown in the 13C NMR spectrum by the couplings of both Sn atoms to the dmio olefinic carbons with J values of 29.4 and 24.7 Hz. The δ119 Sn values for (1: R = Ph) and (2: R = Ph) differ by about 30 ppm, values being −20.7 and −50.1 ppm, respectively, in CDCl3 solution. X-ray structure determinations for (1: R = Ph) and (2: R = Ph or Cy) reveal the compounds to have 4-coordinate, distorted tetrahedral tin centres. The dithiolato ligands, dmit and dmio, act as bridging ligands, in contrast to their chelating roles in R2Sn(dmit) and R2Sn(dmio). A further difference between R2Sn(dmit) and R2Sn(dmio), on one hand, and 1 and 2 on the other, is that intermolecular Sn-S and Sn-O interactions are absent in 1 and 2. However, weak intermolecular hydrogen bonding interactions are found in (1: R = Ph) [C-H?π] and in (2: R = Ph) [C-H?π and C-H?O].  相似文献   

4.
Reaction of Ph2PCC(CH2)5CCPh2 with Os3(CO)10(NCMe)2 affords Os3(CO)10(μ,η2-(Ph2P)2C9H10) (1) and the double cluster [Os3(CO)10]2(μ,η2- (Ph2P)2C9H10)2 (2), through coordination of the phosphine groups. Thermolysis of 1 in toluene generates Os3(CO)7(μ-PPh2)(μ35-Ph2PC9H10) (3) and Os3(CO)8(μ-PPh2)(μ36-Ph2P(C9H10)CO) (4). The molecular structures of 1, 3, and 4 have been determined by an X-ray diffraction study. Both 3 and 4 contain a bridging phosphido group and a carbocycle connected to an osmacyclopentadienyl ring, which are apparently derived from C-P bond activation and C-C bond rearrangement of the dpndy ligand governed by the triosmium clusters.  相似文献   

5.
Ion-supported Ph3P, 4-(diphenylphosphino)benzyltrimethylammonium bromide A and N-methyl-N-[4-(diphenylphosphino)benzyl]pyrrolidinium bromide B, were used for the Wittig reaction. Ion-supported phosphonium salts A1 and B1, which were prepared from the reactions of ion-supported Ph3P A and B with ethyl bromoacetate, respectively, reacted with aromatic and aliphatic aldehydes in the presence of K2CO3 to give the corresponding α,β-unsaturated ethyl esters in good yields with high purity by simple filtration of the reaction mixture and subsequent removal of the solvent from the filtrate. Similarly, ion-supported phosphonium salts A2 and B2, which were prepared from the reactions of ion-supported Ph3P A and B with p-methylbenzyl bromide, respectively, reacted with aromatic and aliphatic aldehydes in the presence of NaH to provide the corresponding p-methylstyrene derivatives in good yields with high purity by simple filtration of the reaction mixture and the subsequent removal of the solvent from the filtrate. In both reactions, the co-product, ion-supported Ph3PO, could be obtained quantitatively by simple filtration, and was converted into the corresponding ion-supported Ph3P A and B again in high yields using dimethyl sulfate, followed by the reduction with LiAlH4. Recovered and regenerated ion-supported Ph3P A and B could be reused for the same Wittig reaction while maintaining good yields of ethyl (E)-3-(4′-chlorophenyl)-2-propenoate and 1-(4′-chlorophenyl)-2-(4″-methylphenyl)ethene with high purity by simple filtration and removal of the solvent from the filtrate.  相似文献   

6.
The complexes [Rh(CO)(PPh3){Ph2PNP(O)Ph2-P,O}] (3), [Rh(CO)2{Ph2P(Se)NP(Se)Ph2-Se,Se′}] (5), and [Rh(CO)(PPh3){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (6), were synthesised by stepwise reactions of CO and PPh3 with [Rh(cod){Ph2PNP(O)Ph2-P,O}] (2) and [Rh(cod){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (4), respectively. The complexes 3, 5 and 6 have been studied by IR, as well as 1H and 31P NMR spectroscopy. The ν(CO) bands of complexes 3 and 6 appear at approximately 1960 cm−1, indicating high electron density at the RhI centre. The structure of complexes 3 and 6 has been determined by X-ray crystallography, and the 31P NMR chemical shifts have been resolved via low temperature NMR experiments. Both complexes exhibit square planar geometry around the metal centre, with the five-membered ring of complex 3 being almost planar, and the six-membered ring of complex 6 adopting a slightly distorted boat conformation. The C-O bond of the carbonyl ligand is relatively weak in both complexes, due to strong π-back donation from the electron rich RhI centre. The catalytic activity of the complexes 2, 3 and 6 in the hydroformylation of styrene has been investigated. Complexes 2 and 3 showed satisfactory catalytic properties, whereas complex 6 had effectively no catalytic activity.  相似文献   

7.
Syntheses of [Me3SbM(CO)5] [M = Cr (1), W (2)], [Me3BiM(CO)5] [M = Cr (3), W (4)], cis-[(Me3Sb)2Mo(CO)4] (5), [tBu3BiFe(CO)4] (6), crystal structures of 1-6 and DFT studies of 1-4 are reported.  相似文献   

8.
The reaction between ClCH2-R-CH2Cl, R = p-C6H4, and [Ph3Sn]Li+ yields Ph3Sn-CH2-R-CH2-SnPh3 (1) in high yield. The related known compound R = CH2CH2 (1a) is synthesized by the reaction of the di-Grignard reagent BrMg(CH2)4MgBr with two equivalents of Ph3SnCl. Cleavage of a single Sn-Ph group at each tin centre of both compounds using HCl/Et2O yields the corresponding bis-chlorostannanes Ph2ClSn-CH2-R-CH2-SnClPh2, R = (CH2)4 (2) and R = C6H4 (3), respectively. Compounds 1, 2 and 3 are crystalline solid materials and their single crystal X-ray structures are reported. In the solid state both 2 and 3 form self-assembled ladder structures involving alternating intermolecular Cl-Sn?Cl and Cl?Sn-Cl bonded chains at both ends of the distannanes with 5-coordinate tin atoms. Recrystallization of 3 from CH2Cl2 in the presence of DMF yields the bis-DMF adduct (4) in which no self-assembled structures were noted. Evaluation of the chlorostannanes 2 and 3 against a suite of bacteria, Staphylococcus aureus, Escherichia coli and Photobacterium phosphoreum is reported and compared to the related mono-chlorostannanes Ph2(CH3)SnCl and Ph2(PhCH2)SnCl.  相似文献   

9.
The first examples of bridging tin- and germanium-substituted metallocarboxylate ligands have been obtained from the reactions of Ph3SnOH and Ph3GeOH with Os3(CO)12 under basic conditions. Two products: Os3(CO)10(μ-η2-O=COSnPh3)(μ-OMe), 1 (18% yield) and Os3(CO)10(μ-OMe)(μ-OH), 2 (6.9% yield) were obtained from the reaction of Ph3SnOH with Os3(CO)12 in the presence of [Bu4N]OH in methanol solvent. The compound Os3(CO)10(μ-η2-O=COGePh3)(μ-OMe), 3 (7.3% yield) was prepared similarly by using Ph3GeOH in place of Ph3SnOH. Each of the products 1-3 were characterized structurally by single-crystal X-ray diffraction analysis. Compounds 1 and 3 each contain an μ-η2-O=COMPh3, M = Sn or Ge ligand bridging a pair of osmium atoms in a triosmium carbonyl cluster complex.  相似文献   

10.
Treatment of the bulky iminophosphine ligand [Ph2PCH2C(Ph)N(2,6-Me2C6H3)] (L) with [M(CH3CN)2(ligand)]+n, where for M = Pd(II): ligand = η3-allyl, n = 1, and for M = Rh(I), ligand: 2(C2H4), 2(CO) or cod, n = 0, yields the mono-cationic iminophosphine complexes [Pd(η3-C3H5)(L)][BF4] (1), [Rh(cod)(L)][BF4] (2), [Rh(CO)(CH3CN)(L)][BF4] (3), and cis-[Rh(L)2][BF4] (4). All the new complexes have been characterised by NMR spectroscopy and X-ray diffraction. Complex 1 shows moderate activity in the copolymerisation of CO and ethene but is inactive towards Heck coupling of 4-bromoacetophenone and n-butyl acrylate.  相似文献   

11.
A new series of neutral organometallic building blocks based on piano-stool ruthenium(II) complexes, RuCl2(p-cymene)Ph2PCH2Y [Y = -NHC6H4(2-CO2H) (2a), -NHC6H4(3-CO2H) (2b), -NHC6H3(3-CO2H)(6-OCH3) (2c), -NHC6H4(4-CO2H) (2d), -NHC6H3(2-CO2H)(4-OH) (2e), -NHC6H3(3-OH)(4-CO2H) (2f), -NHC6H3(2-CO2H)(5-CO2H) (2g) and -OH (2h)], were synthesised in high yields (>88%) from {RuCl2(p-cymene)}2 and the appropriate phosphines 1a-1h. The new tertiary phosphine 1b was prepared by Mannich condensation of NH2C6H4(3-CO2H) with Ph2PCH2OH in MeOH. Solution NMR (31P{1H}, 1H), FT-IR and microanalytical data are in full agreement with the proposed structures. Single crystal X-ray studies confirm that, in each case, compounds 2a, 2b and 2d-2h have piano-stool arrangements with typical Ru-P, Ru-Cl and Ru-Ccentroid bond lengths. From our crystallographic studies, factors that influence the supramolecular assemblies of these ruthenium(II) complexes include: (i) the type of functional group present, (ii) the geometric disposition of the -N(H)CH2PPh2, -CO2H and -OH groups around the central benzene scaffold, and (iii) the solvents used in the recrystallisations. Hence in isomers 2a and 2b, molecules are associated into head-to-tail dimer pairs through classical intermolecular O-H?O hydrogen bonding. This feature is also observed in isomer 2d but dimer pairs are further associated to give a 1-D chain through assisted intermolecular N-H?Cl hydrogen bonding. The additional 4-hydroxo group in 2e promotes a ladder arrangement via intermolecular O-H?O and O-H?Cl hydrogen bonding. In contrast the isomeric compound 2f does not show head-to-tail O-H?O hydrogen bonding but instead O-H?Cl and N-H?O intermolecular hydrogen bonding is observed. Depending on the choice of solvent (MeOH or DMSO), 2g forms extended networks based on chains (2g · DMSO · 1.5MeOH) or tapes (2g · 3MeOH). In 2h, a single intramolecular O-H?Cl hydrogen bond is observed for each independent molecule. The X-ray structure of one representative tertiary phosphine, 1f, has also been determined.  相似文献   

12.
New catecholate Sb(V) complexes triphenyl(3,6-di-tert-butylcatecholato)antimony(V) Ph3Sb(3,6-DBCat) (1) and triphenyl(perchloroxanthrenecatecholato)antimony(V) Ph3Sb(OXCatCl) (2) were synthesized by the oxidative addition reaction of corresponding o-quinones (3,6-di-tert-butyl-o-benzoquinone and perchloroxanthrenequinone-2,3) with triphenylantimony. Catecholates 1 and 2 can alternatively be synthesized by reacting the appropriate thallium catecholate with triphenylantimony dichloride. The oxidative addition reaction of an equimolar ratio of 4,4′-di-(3-methyl-6-tert-butyl-o-benzoquinone) and triphenylantimony yielded 4-(2-methyl-5-tert-butyl-cyclohexadien-1,5-dion-3,4-yl)-(3-methyl-6-tert-butyl-catecholato)triphenylantimony(V) Ph3Sb(Cat-Q) (3); in the case of a 1:2 molar ratio, complex 4,4′-di-[(3-methyl-6-tert-butyl-catecholato)triphenylantimony(V)] Ph3Sb(Cat-Cat)SbPh3 (4) resulted. Complexes 1-4 were characterized by IR- and 1H NMR spectroscopy. Molecular structures of 1, 2 and 4 were determined by X-ray crystallography to be a distorted tetragonal-pyramidal.  相似文献   

13.
To study the Ru-M interactions and their effects on 31P NMR, complexes [Ru(CO)3(Ph2Ppy)2] (py = pyridine) (1) and [Ru(CO)3(Ph2Ppy)2MCl2] (M = Zn, 2; Cd, 3; Hg, 4) were calculated by density functional theory (DFT) PBE0 method. Moreover, the PBE0-GIAO method was employed to calculate the 31P chemical shifts in complexes. The calculated 31P chemical shifts in 1-3 follow 2 > 3 > 1 which are consistent to experimental results, proving that PBE0-GIAO method adopted in this study is reasonable. This method is employed to predict the 31P chemical shift in designed complex 4. Compared with 1, the 31P chemical shifts in 2-4 vary resulting from adjacent Ru-M interactions. The Ru → M or Ru ← M charge-transfer interactions in 2-4 are revealed by second-order perturbation theory. The strength order of Ru → M interactions is the same as that of the P-Ru → M delocalization with Zn > Cd > Hg, which coincides with the order of 31P NMR chemical shifts. The interaction of Ru → M, corresponding to the delocalization from 4d orbital of Ru to s valence orbital of M2+, results in the delocalization of P-Ru → M, which decreases the electron density of P nucleus and causes the downfield 31P chemical shifts. Except 2, the back-donation effect of Ru ← M, arising from the delocalization from s valence orbital of M2+ to the valence orbital of Ru, is against the P-Ru → M delocalization and results in the upfield 31P chemical shifts in 4. Meanwhile, the binding energies indicate that complex 4 is stable and can be synthesized experimentally. However, as complex [Ru(CO)3(Ph2Ppy)2HgCl]+5 is more stable than 4, the reaction of 1 with HgCl2 only gave 5 experimentally.  相似文献   

14.
The complexes [W(CO)5(Ph2SbX)], X = Cl (1), Br (2) and I (3) were prepared by reaction of [W(CO)5(tetrahydrofuran)] with Ph2SbX. The structures of 1-3 were studied by X-ray diffraction. In the crystals there are weak contacts between the oxygen atoms of the CO ligands and antimony atoms of neighbouring molecules. DFT calculations were carried out for 1 using gradient corrected functional B3LYP. The bonding between Ph2SbCl and the W(CO)5 fragment in 1 was analysed using charge decomposition analysis.  相似文献   

15.
The P-functional organotin chloride Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] and trans-[(Et2S)2MCl2] (M=Pd, Pt) in molar ratio 1:1 to the zwitterionic complexes [(COD)M+(Cl)(PPh2CH2CH2SnCl4)] (1: M=Pd; 2: M=Pt) and trans-[(Et2S)2M+(Cl)(PPh2CH2CH2SnCl4)] (3: M=Pd; 4: M=Pt). The same reaction with [(COD)Pd(Cl)Me] yields under transfer of the methyl group from palladium to tin the complex [(COD)M+(Cl)(PPh2CH2CH2SnMeCl3)] (5) which changes in acetone into the dimeric adduct [Cl2Pd(PPh2CH2CH2SnMeCl2·2Me2CO)]2 (6). In molar ratio 2:1 Ph2PCH2CH2SnCl3 reacts with [(COD)MCl2] to the complexes [Cl2Pd(PPh2CH2CH2SnCl3)2] (7: M=Pd, mixture of cis/trans isomer; 8: M=Pt, cis isomer). In a subsequent reaction 8 is transformed in acetone into the 16-membered heterocyclic complex cis-[Cl2Pt(PPh2CH2CH2)2SnCl2]2 (9). trans-[(Et2S)2PtCl2] and Ph2PCH2CH2SnCl3 in molar ratio 1:2 yields the zwitterionic complex [(Et2S)M+(Cl)(PPh2CH2CH2SnCl3)(PPh2CH2CH2SnCl4)] (10). The results of crystal structure analyses of 1, 3, 6, 9 and of the adduct of the trans-isomer of 7 with acetone (7a) are reported. 31P- and 119Sn-NMR data of the complexes are discussed.  相似文献   

16.
17.
Six organophosphine/phosphite stabilized silver(I) methanesulfonates of type [LnAgO3SCH3] (L = Ph3P, n = 1, 2a; n = 2, 2b; n = 3, 2c; L = (EtO)3P; n = 1, 2d; n = 2, 2e; n = 3, 2f) were synthesized by the reaction of silver methanesulfonates with triphenylphosphine or triethylphosphite in dichloromethane under nitrogen atmosphere. These complexes were obtained in high yields and characterized by elemental analysis, 1H-, 13C{H} NMR, IR spectroscopy and thermogravimetric analysis (TGA), respectively. X-ray single crystal analysis reveals that complex 2a is a tetramer [Ph3PAgO3SCH3]4 and complex 2b is a monomer. The thermal stability of 2a has been studied by applying thermogravimetric analysis. It starts to decompose between 50 and 440 °C in a three-step process. The final residue (Ag) is about 20.50%.  相似文献   

18.
Optically active ligands of type Ph2PNHR (R = (R)-CHCH3Ph, (a); (R)-CHCH3Cy, (b); (R)-CHCH3Naph, (c)) and PhP(NHR)2 (R = (R)-CHCH3Ph, (d); (R)-CHCH3Cy, (e)) with a stereogenic carbon atom in the R substituent were synthesized. Reaction with [PdCl2(COD)2] produced [PdCl2P2] (1) (P = PhP(NHCHCH3Ph)2), whose molecular structure determined by X-ray diffraction showed cis disposition for the ligands. All nitrogen atoms of amino groups adopted S configuration. The new ligands reacted with allylic dimeric palladium compound [Pd(η3-2-methylallyl)Cl]2 to gave neutral aminophosphine complexes [Pd(η3-2-methylallyl)ClP] (2a-2e) or cationic aminophosphine complexes [Pd(η3-2-methylallyl)P2]BF4 (3a-3e) in the presence of the stoichiometric amount of AgBF4. Cationic complexes [Pd(η43-2-methylallyl)(NCCH3)P]BF4 (4a-4e) were prepared in solution to be used as precursors in the catalytic hydrovinylation of styrene. 31P NMR spectroscopy showed the existence of an equilibrium between the expected cationic mixed complexes 4, the symmetrical cationic complexes [Pd(η3-2-methylallyl)P2]BF4 (3) and [Pd(η3-2-methylallyl)(NCCH3)2]BF4 (5) coming from the symmetrization reaction. The extension of the process was studied with the aminophosphines (a-e) as well as with nonchiral monodentate phosphines (PCy3 (f), PBn3 (g), PPh3 (h), PMe2Ph (i)) showing a good match between the extension of the symmetrization and the size of the phosphine ligand. We studied the influence of such equilibria in the hydrovinylation of styrene because the behaviour of catalytic precursors can be modified substantially when prepared ‘in situ’. While compounds 3 and bisacetonitrile complex 5 were not active as catalysts, the [Pd(η3-2-methylallyl)(η2-styrene)2]+ species formed in the absence of acetonitrile showed some activity in the formation of codimers and dimers. Hydrovinylation reaction between styrene and ethylene was tested using catalytic precursors solutions of [Pd(η3-2-methylallyl)LP]BF4 ionic species (L = CH3CN or styrene) showing moderate activity and good selectivity. Better activities but lower selectivities were found when L = styrene. Only in the case of the precursor containing Ph2PNHCHCH3Ph (a) ligand was some enantiodiscrimination (10%) found.  相似文献   

19.
The reaction of 1,1,4,4-tetrakis[bis(trimethylsilyl)methyl]-1,4-diisopropyltetrasila-2-yne 1 with secondary or primary amines produced amino-substituted disilenes R(R2′N)SiSiHR 2a-d (R = SiiPr[CH(SiMe3)2]2, R2′NEt2N (2a), (CH2CH2)2N (2b), tBu(H)N (2c), and Ph2N (2d)). Spectroscopic and X-ray crystallographic analyses of 2 showed that 2a-c have a nearly coplanar arrangement of the SiSi double bond and the amino group, giving π-conjugation between the SiSi double bond and the lone pair on the nitrogen atom, whereas 2d has a nearly perpendicular arrangement precluding such conjugation. Theoretical calculations indicate that π-conjugation between the π-orbital of the SiSi double bond and the lone pair on the nitrogen atom is markedly influenced by the torsional angle between the SiSi double-bond plane and the amino-group plane.  相似文献   

20.
A Mo(0) complex containing a new tetraphosphine ligand [Mo(P4)(dppe)] (1; P4 = meso-o-C6H4(PPhCH2CH2PPh2)2, dppe = Ph2PCH2CH2PPh2) reacted with CO2 (1 atm) at 60 °C in benzene to give a Mo(0) carbonyl complex fac-[Mo(CO)(η3-P4O)(dppe)] (2), where the O abstraction from CO2 by one terminal P atom in P4 takes place to give the dangling P(O)Ph2 moiety together with the coordinated CO. On the other hand, reaction of 1 with TolNCS (Tol = m-MeC6H4) in benzene at 60 °C resulted in the incorporation of three TolNCS molecules to the Mo center, forming a Mo(0) isocyanide-isothiocyanate complex trans,mer-[Mo(TolNC)22-TolNCS)(η3-P4S)] (4), where the S abstraction occurs from two TolNCS molecules by P4 and dppe to give the η3-P4S ligand and free dppeS, respectively, together with two coordinated TolNC molecules. The remaining site of the Mo center is occupied by the third TolNCS ligating at the CS bond in an η2-manner. The X-ray analysis has been undertaken to determine the detailed structures for 2 and 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号