首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Solid State Sciences》2001,3(1-2):211-222
Luminescent hybrid materials consisting in rare-earth (Eu3+, Gd3+) organic complexes covalently attached to a silica-based network have been obtained by a sol–gel process. Four dicarboxylic acids with different aromatic subunits (dipicolinic acid, 4-phenyl-2,6-pyridinedicarboxylic acid, 4-(phenylethynyl)-2,6-pyridinedicarboxylic acid and 2,6-Bis(3-carboxy-1-pyrazolyl)pyridine) have been chosen as ligands for Ln3+ ions. They were grafted to 3-aminopropyltriethoxysilane (APTES) to give organically modified alkoxysilanes that were used as molecular precursors for the preparation of hybrid materials. Ln3+ first coordination sphere, composition of the siloxane matrix and connection between the organic and inorganic parts have been characterized by infrared spectroscopy, by 13C29Si solid-state NMR as well as by elemental analyses. UV excitation in the organic component resulted in strong emission from Eu3+ ions due to an efficient ligand-to-metal energy transfer. As compared to reference organic molecules, hybrid samples exhibited similar emission properties under UV excitation in addition to mainly unchanged excited states lifetimes. However, by direct excitation of the Eu3+-5D0 energy level, the presence of two different site distributions were evidenced in the four hybrid compounds. Emission features related to each of these site distributions and their respective attribution were investigated. Variations in the relative emission intensities were observed according to the nature of the organic chromophore. These variations were discussed in relation to the ATE (Absorption-Transfer-Emission) mechanism and to the relative energy positions of the ligand and the rare-earth ions respectively.  相似文献   

2.
1,3-Bis(2-formylphenoxy)-2-propanol (BFPP) was first synthesized and then grafted to 3-(triethoxysilyl)propyl isocyanate (TESPIC) to achieve a molecular precursor BFPP-Si through the hydrogen-transfer nucleophilic addition reaction between the hydroxyl group of BFPP and the isocyanate group of TESPIC. Then, a chemically bonded lanthanide/inorganic/organic hybrid material (BFPP-Si-Ln) was constructed using BFPP-Si as a bridge molecule that can both coordinate to lanthanide ions (Eu3+ or Tb3+) and form an inorganic Si-O network with tetraethoxysilane (TEOS) after cohydrolysis and copolycondensation processes. Furthermore, two types of ternary rare-earth/inorganic/organic hybrids (BFPP-Si-Dipy-Ln and BFPP-Si-Phen-Ln) were assembled by the introduction of the second ligands (4,4'-bipyridyl and 1,10-phenanthroline) into the above system. All of these hybrid materials exhibit homogeneous microstructures and morphologies, suggesting the occurrence of self-assembly of the inorganic network and organic chain. Measurements of the photoluminescent properties of these materials show that the ternary rare-earth/inorganic/organic hybrids present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the binary hybrids, indicating that the introduction of the second ligands can sensitize the luminescence emission of the lanthanide ions in the ternary hybrid systems.  相似文献   

3.
In this paper, a kind of aromatic carboxylic acid of sulfhydryl group (2-mercaptonicotinic acid) is modified with four silane crosslinking reagents (3-methacryloyloxypropyltrimethoxysilane (S1), 3-glycidoxypropyltrimethoxysilane (S2), 3-aminopropyltrimethoxysilane (S3), and 3-(triethoxysilyl)propylisocyanate (S4)) to achieve four new kinds of functionalized molecular bridge (Pi (i = 1-4)). Subsequently, four molecular bridges and lanthanides (europium and terbium) or zinc ions have been assembled via chemical bonds through a sol-gel (cohydrolysis and copolycondensation) process with inorganic precursor (tetraethoxysilane, TEOS), resulting in four novel series of chemically bonded hybrid materials which named as Ln (Zn)-Mi (i = 1-4). The coordinated bonding makes metal ions evenly dispersed in a stable hybrid system. The intramolecular energy transfer process between lanthanide ions and the molecular bridges take place within these molecular-based hybrids and especially the luminescent quantum efficiency of them are determined, suggesting that the hybrid material systems derived from different molecular bridges present different luminescence efficiencies.  相似文献   

4.
2-Hydroxynicotinic acid (HNA) was grafted by 3-(triethoxysilyl)propyl isocyanate (TEPIC) to achieve the molecular precursor HNA-Si through the hydrogen-transfer nucleophilic addition reaction between the hydroxyl group of HNA and the isocyanate group of TEPIC. Then, a chemically bonded rare-earth/inorganic polymeric hybrid material (A) was constructed using HNA-Si as a bridge molecule that can both coordinate to rare-earth ions (HNA-Si-RE) and form an inorganic Si-O network with tetraethoxysilane (TEOS) after cohydrolysis and copolycondensation processes. Further, three types of novel rare-earth/inorganic/organic polymeric hybrids (B-D) were assembled by the introduction of three different organic polymeric chains into the above system. First, methacrylic acid (MAA) [or methacrylic acid and acrylamide (ALM) in the molar ratio of 1:1] was mixed to polymerize (or copolymerize) with benzoyl peroxide (BPO) as the initiator to form poly(methacrylic acid) (PMAA) [or poly(methacrylic and acrylamide) (PMAALM)], and then PMAA or PMAALM was added to the precursor HNA-Si before the assembly of HNA-Si-RE, resulting in the hybrid materials HNA-Si-RE-PMAA (B) and HNA-Si-RE-PMAALM (C). Second, poly(vinylpyrrolidone) (PVP) was added to coordinate to the rare-earth ions by the carbonyl group in the complex HNA-Si-RE, to achieve the hybrid HNA-Si-RE-PVP (D). All of these hybrid materials exhibit homogeneous, regular, and ordered microstructures and morphologies, suggesting the occurrence of self-assembly of the inorganic network and organic chain. Measurements of the photoluminescent properties of these materials show that the ternary rare-earth/inorganic/organic polymeric hybrids present stronger luminescent intensities, longer lifetimes, and higher luminescent quantum efficiencies than the binary rare-earth/inorganic polymeric hybrids, indicating that the introduction of the organic polymer chain is a benefit for the luminescence of the overall hybrid system.  相似文献   

5.
A series of polyurethane/polyaniline/silica organic/inorganic hybrids were synthesized via the conventional polyurethane (PU) prepolymer technique. Amine-endcapped polyaniline (PANI) with low molecular weight and higher solubility was firstly synthesized. This PANI oligomer was then used together with nano-silica bearing silanol groups as chain extenders to prepare the conducting polyurethane hybrids. The polyurethane hybrids were designated as PU-xPANI-ySiO2 (x + y = 1). For comparison, the urethane-aniline block copolymer and the PU/silica hybrid were designated as PU-PANI and PU-SiO2, respectively.The structures of PU-PANI, PU-SiO2 and conducting polyurethane hybrids were confirmed by FT-IR, solid-state 13C, and 29Si NMR spectra. In nano-silica containing organic/inorganic conducting polyurethane hybrids, UV-vis spectra revealed the maximum absorption bands similar to that of PU-PANI. X-ray diffraction patterns indicated that these samples are typical of semicrystalline/amorphous materials. SEM image of PU-0.5PANI-0.5SiO2 showed that PANI was dispersed homogeneously and interconnected continuously in the insulating PU-silica matrix. TGA results of the polymer hybrids exhibited higher thermal stabilities and lower decomposition rates than that of PU-PANI both in nitrogen and air. Differential scanning calorimetry (DSC) studies indicated that the polyurethane hybrids had higher glass-transition temperatures (Tg) with the increase of PANI, but lower than that of PU-PANI. Stress-strain curves for all of the polyurethane hybrids showed the elastomeric behavior of typical polyurethanes. The surface resistivity values of all hybrids were about 108 ∼ 1010 Ω/sq. and might meet the requirement of the anti-electrostatic materials.  相似文献   

6.
Proton conductive inorganic–organic hybrid membranes were synthesized from 3-glycidyloxypropyltrimethoxysiane (GPTMS), phenyltriethoxysilane (PhTES) and hydroxyalkylphosphonic acid. Two kinds of hydroxyalkylphosphonic acids, 1-hydroxyethane-1,1-diphosphonic acid (HEDPA) and hydroxyethanephosphonic acid (HEPA), were incorporated into the membranes as functional molecules for proton conduction. FT-IR and Raman studies revealed the presence of phosphonic acid groups in the hybrid membranes. 13C and 29Si NMR confirmed that a three-dimensional siloxane network was formed in the prepared hybrid membrane by hydrolysis and condensation reactions. DTA-TG analysis showed that these membranes were thermally stable up to 200 °C. The HEDPA-based system was found to have higher proton conductivities than the HEPA-based one. The proton conductivities of the hybrid membranes increased with the phosphonic acid content and temperature up to 130 °C. The conductivities of the HEDPA/GPTMS/PhTES membranes = 1/1.6/0.4 were 1.0 × 10−1 and 4.5 × 10−4 S cm−1 at 100% relative humidity and non-humidified conditions, respectively, at 130 °C.  相似文献   

7.
We report results of a microcalorimetry study of the association of inorganic and organic cations with two p-sulfonatocalix[n]arenes (host 1: n = 4; host 2: n = 6) in aqueous solution at 298.15 K. First, we have determined the thermodynamic parameters for the complexation between the host 2 and a series of quaternary ammonium cations. We have evaluated the influence of the pH on the structure and energetics of these organic complexes. We have also reported the association constant and enthalpy of reaction for the complexation of some rare-earth cations (Sm3+, Dy3+, Y3+ and Sc3+ cations) with the two hosts. In all cases we have observed the formation of 1:1 complexes.

Whereas the association is driven by a favourable entropy change for the inorganic cations (ΔH > 0 and TΔS>>0), it is controlled by a favourable enthalpy change for the organic cations (ΔH < < 0 and TΔS < 0 or >0). In acidic solution, the complexes formed between host 2 and tetraalkylammonium cations are weaker than those formed with the cyclic tetramer. In neutral solution this effect is not observed. All the results are in line with a conformational change of host 2 with the pH.  相似文献   

8.
The title compound was prepared from the elements by reaction in a sealed tantalum tube at 1320 K followed by slow cooling to 970 K or, alternatively, in glassy carbon crucibles with HF melting. The crystal structure of Eu5Ga9 was refined from single-crystal data: Cmcm, a=4.613(1) Å, b=10.902(3) Å, c=26.097(6) Å, Z=4, RF=0.036, 811 structure factors and 46 variables. The structure is described as a three-dimensional network formed by gallium atoms with europium atoms embedded in the cavities. The bonding analysis (LMTO, ELF) confirmed this representation of the structure. Magnetic susceptibility measurements show Curie-Weiss behavior above 60 K with a magnetic moment per Eu atom of 8.12(1) μB, indicating divalent europium. Eu5Ga9 orders antiferromagnetically at 19.0(5) K with re-ordering at 6.0(5) K. The electrical resistivity shows a metallic temperature dependence and magnetic scattering. 151Eu Mössbauer spectroscopic experiments are compatible with divalent europium and show complex magnetic hyperfine field splitting below the ordering temperature.  相似文献   

9.
EuPdGe was prepared from the elements by reaction in a sealed tantalum tube in a high-frequency furnace. Magnetic susceptibility measurements show Curie-Weiss behavior above 60 K with an experimental magnetic moment of 8.0(1)μB/Eu indicating divalent europium. At low external fields antiferromagnetic ordering is observed at TN=8.5(5) K. Magnetization measurements indicate a metamagnetic transition at a critical field of 1.5(2) T and a saturation magnetization of 6.4(1)μB/Eu at 5 K and 5.5 T. EuPdGe is a metallic conductor with a room-temperature value of 5000±500 μΩ cm for the specific resistivity. 151Eu Mössbauer spectroscopic experiments show a single europium site with an isomer shift of δ=−9.7(1) mm/s at 78 K. At 4.2 K full magnetic hyperfine field splitting with a hyperfine field of B=20.7(5) T is observed. Density functional calculations show the similarity of the electronic structures of EuPdGe and EuPtGe. T-Ge interactions (T=Pd, Pt) exist in both compounds. An ionic formula splitting Eu2+T0Ge2− seems more appropriate than Eu2+T2+Ge4− accounting for the bonding in both compounds. Geometry optimizations of EuTGe (T=Ni, Pt, Pd) show weak energy differences between the two structural types.  相似文献   

10.
A novel flow injection analysis (FIA) system based on liquid-liquid microextraction and fluorimetric determination was developed for the determination of traces of the Zn2+ ion using 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a sensitive and selective fluorimetric sensor, with λex = 373 nm and λem = 530 nm, and hexanol as the extracting organic solvent. In the designed FIA system, the phase separation takes place via gravitation forces in the absence of any segmenter. The influence of pH and ionic strength of the solution, amount of ligand, nature of counter ion, volume of organic solvent, extraction time and coil length was investigated. Under optimized experimental conditions, the calibration curve found to be liner over a concentration range of 0.025-4.53 μg mL−1 (R2 = 0.9951) with a limit of detection of 2.3 ng mL−1. The enrichment factor was 45 and relative standard deviation for 7 replicate determinations was 2.43%. The method is very fast and uses low levels of organic solvents. The proposed method was applied successfully to the determination of zinc(II) in human hair, human serum and two inorganic sludge samples.  相似文献   

11.
Hybrid Eu3+-doped silica-poliethyleneoxide (PEO) nanocomposites with covalent bonds between the inorganic (siloxane) and organic (PEO) phases have been obtained by sol-gel process. These materials are transparent, flexible and present high Eu3+ luminescence output. Their luminescence properties, local environment around europium ions and structure have been investigated as a function of europium content. EXAFS measurements indicate that the increase in Eu-doping induces a decrease in Eu3+ coordination number. An increase in symmetry degree around the metal ion is also observed for increasing Eu3+ concentration, while non radiative decay paths from the 5D0 excited state become more important. SAXS results suggest the preferential interaction of europium ions with ether-type oxygens of the polymer chains. However, the existence of interactions between the cations and the carbonyl groups from urea bridges located at the siloxane-PEO interface can not be excluded.  相似文献   

12.
It was found that the major constituents (F and S2–) in fluorides, sulfides, and sulfofluorides of rare-earth elements, and europium(II) in europium fluoride, can be determined titrimetrically. Peculiarities of the decomposition and analysis of initial samples of these compounds and samples after high-temperature treatment in vacuum were considered. The analytical procedures are based on the combination of the decomposition of the test materials using solutions of iodine (determination of S2–), boric acid (determination of F), and vanadium(V) salts (determination of europium(II) salts) and the final titration of excess reagents that selectively reacted with a chemical form of the analyte. Potentiometry with an ion-selective electrode was also used in the determination of fluoride ions. The total concentration of rare-earth elements was determined by chelatometry.  相似文献   

13.
PDMS-Ni2+Y zeolite hybrid membranes were fabricated and used for the pervaporation removal of thiophene from model gasoline system. The structural morphology, mechanical stability, crystallinity, and free volume characteristics of the hybrid membranes were systematically investigated. Molecular dynamics simulation was employed to calculate the diffusion coefficients of small penetrants in the polymer matrix and the zeolite. The effect of Ni2+Y zeolite content on pervaporation performance was evaluated experimentally. With the increase of Ni2+Y zeolite content, the permeation flux increased continuously, while the enrichment factor first increased and then decreased possibly due to the occurrence of defective voids within organic–inorganic interface region. The PDMS membrane containing 5.0 wt% Ni2+Y zeolite exhibited the highest enrichment factor (4.84) with a permeation flux of 3.26 kg/(m2 h) for 500 ppm sulfur in feed at 30 °C. The effects of operating conditions on the pervaporation performance were investigated in detail. It has been found that the interfacial morphology strongly influenced the separation performance of the hybrid membrane, and it was of great significance to rationally modify the interfacial region in order to improve the organic–inorganic compatibility.  相似文献   

14.
Novel organic–inorganic hybrid materials shaped as transparent films and core–shell nanoparticles were prepared by the sol–gel process from a new organo-alkoxysilane based on a β-diketonate (DBM-OH) and doped with trivalent europium ions. The resultant hybrid materials were characterized by Raman spectroscopy and electronic microscopy. Films thickness and nanoparticles size were respectively measured around 1?μm and 30?nm. The photoluminescence study, including the recording of excitation and emission spectra as well as the determination of the decay times, was investigated at room temperature. The results have pointed out an efficient ligand-to-Eu3+ intramolecular energy transfer resulting in a high quantum yield as determined by using an integrating sphere.  相似文献   

15.
16.
Yan B  Lu HF 《Inorganic chemistry》2008,47(13):5601-5611
A series of novel photoactive lanthanide (europium, terbium, dysprosium, samarium) hybrid materials with organic parts covalently bonded to inorganic parts via sulfide linkage have been assembled by the sol-gel process. The organic parts as molecular bridge are obtained from the functionalized thiosalicylic acids by five silane crosslinking reagents, 3-chloropropyltrimethoxysilane, 3-methacryloyloxypropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-(triethoxysilyl)propylisocyanate. The intramolecular energy transfer process between lanthanide ions and the molecular bridges took place within these molecular-based hybrids and especially the quantum efficiency of europium hybrids were determined, suggesting that the hybrid material systems derived from different molecular bridges present different luminescence efficiencies.  相似文献   

17.
Ternary organic/inorganic/polymeric hybrid material PVP-Eu-(DBM-Si)3 (DBM = dibenzoylmethane; PVP = poly(4-vinylpyridine)) have been synthesized through the coordination bonds. The precursor DBM-Si is obtained by the modification of DBM molecule with a cross-linking reagent TEPIC (3-(triethoxysilyl)-propyl isocyanate), which is used to form the inorganic Si–O–Si networks with TEOS (tetraethoxysilane) after a hydrolysis and polycondensation process. PVP, which is obtained through the polymerization reaction using 4-vinylpyridine as the monomer in the presence of BPO (benzoyl peroxide), is used to form the organic polymeric C–C chains. For comparison, the binary organic/inorganic hybrid material Eu-(DBM-Si)3 was also synthesized simultaneously. FT-IR (Fourier-transform infrared spectra), UV (ultraviolet absorption spectra), UV-DR (ultraviolet–visible diffuse reflection absorption spectra), SEM (scanning electron micrograph), PL (photoluminescence spectroscopy) and LDT (luminescence decay time) measurements are used to investigate the physical properties of the obtained hybrid materials. The results reveal that the ternary hybrids presents more regular morphology, higher red/orange ratio, stronger luminescent intensity, higher 5D0 luminescence quantum efficiency and longer lifetime than the binary one, suggesting the property of the overall hybrid system is improved with the introduction of the organic polymer PVP.  相似文献   

18.
The synthesis and hyperpolarizabilities of a series of push-pull chromophores containing bis-(4-methoxyphenyl)-amine donor and efficient acceptors bridged with ring locked polyene are presented. The chromophores are readily soluble in common organic solvents and exhibit high thermal decomposition temperatures (highest Td = 330 °C). Molecular hyperpolarizabilities (β) of the chromophores were measured by Hyper Rayleigh Scattering (HRS) at 1604 nm (highest β = 20,000 × 10−30 esu). These chromophores can be used to develop electro-optic (EO) materials due to their large optical nonlinearities, good absorption characteristics, high thermal decomposition temperatures, and excellent solubility with organic solvents and polymeric materials.  相似文献   

19.
This paper examines the performance of a previously reported, closed cell, potentiometric titration technique [J.M. Hernández-Ayón, S.L. Belli, A. Zirino, Anal. Chim. Acta 394 (1999) 101] for the simultaneous determination of pH, total inorganic carbon (TCO2), total alkalinity (TA), and organic alkalinity (OA) in coastal seawater samples. A novel interpretation of the titration data, as recently proposed by Hernández-Ayón et al. [J.M. Hernández-Ayón, A. Zirino, A.G. Dickson, T. Camiro-Vagas, E. Valenzuela-Espinoza, Limnol. Oceanogr.: Methods 5 (2007) 225] who applied it to waters of unusually high organic matter content, was applied here to fjord surface waters collected over the duration of a phytoplankton bloom. The parameters pH and TCO2 - combined with knowledge of boric, phosphate and silicate species concentrations - allowed calculation of all inorganic species that contributed to TA. This inorganic alkalinity term was then subtracted from TA to produce an estimation of OA. Although the OA values obtained were very small (2-22 ± 3 μmol L−1), they showed a reproducible trend over time in two simultaneous experiments. The organic acids that may have contributed to OA were characterised in back titrations of acidified and CO2-stripped samples with CO2-free NaOH. Two classes of organic titratable species, with pKa values around 4.0 ± 0.2 and 9.1 ± 0.2 were detected. The first occurred in concentrations that co-varied linearly (r2 = 0.75) with protein-like fluorescence, indicating a marine biological source, but were only weakly correlated (r2 = 0.46) to OA. By contrast, Class 2 organic species were not significantly correlated to any fluorescence component of either marine or terrestrial origin but were linearly correlated to OA (r2 = 0.69). These new results reveal that the method proposed by Hernández-Ayón et al. [J.M. Hernández-Ayón, A. Zirino, A.G. Dickson, T. Camiro-Vagas, E. Valenzuela-Espinoza, Limnol. Oceanogr.: Methods 5 (2007) 225] for estimating OA can provide a powerful and hitherto unused tool for analysing DOM dynamics and sources in most coastal environments, i.e. as a complement to the more widely used optical tools.  相似文献   

20.
Bortoleto GG  Cadore S 《Talanta》2005,67(1):169-174
A rapid and sensitive method for the on-line separation and pre-concentration of inorganic arsenic in water samples is described. The analyte in the pentavalent oxidation state is reduced to its trivalent form with l-cysteine and the total inorganic arsenic is sorbed onto activated alumina in the acid form in a mini-column coupled to a FI-HG AAS system. Afterwards, it is eluted with 3 mol l−1 HCl. An enrichment factor of 7 was obtained, allowing an analytical flow rate of about 28 determinations per hour. The limits of detection (3σ) and of quantification (10σ) were calculated as LOD = 0.15 μg l−1 of As and LOQ = 0.5 μg l−1 of As, respectively. Relative standard deviations (n = 10) less than 8% were obtained for different arsenic concentrations and the accuracy was verified by analysing certified reference materials. Different kinds of samples, such as mineral water, drinking water, river water and natural spring water were analyzed and good agreement was obtained with the values from spiked experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号