首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxidative addition of CH3I to planar rhodium(I) complex [Rh(TFA)(PPh3)2] in acetonitrile (TFA is trifluoroacetylacetonate) leads to the formation of cationic, cis-[Rh(TFA)(PPh3)2(CH3)(CH3CN)][BPh4] (1), or neutral, cis-[Rh(TFA)(PPh3)2(CH3)(I)] (4), rhodium(III) methyl complexes depending on the reaction conditions. 1 reacts readily with NH3 and pyridine to form cationic complexes, cis-[Rh(TFA)(PPh3)2(CH3)(NH3)][BPh4] (2) and cis-[Rh(TFA)(PPh3)2(CH3)(Py)][BPh4] (3), respectively. Acetylacetonate methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(I)] (5), was obtained by the action of NaI on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] in acetone at −15 °C. Complexes 1-5 were characterized by elemental analysis, 31P{1H}, 1H and 19F NMR. For complexes 2, 3, 4 conductivity data in acetone solutions are reported. The crystal structures of 2 and 3 were determined. NMR parameters of 1-5 and related complexes are discussed from the viewpoint of their isomerism.  相似文献   

2.
Cationic methyl complex of rhodium(III), trans-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] (1) is prepared by interaction of trans-[Rh(Acac)(PPh3)2(CH3)I] with AgBPh4 in acetonitrile. Cationic methyl complexes of rhodium(III), cis-[Rh(Acac)(PPh3)2 (CH3)(CH3CN)][BPh4] (2) and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4] (3) (Acac, BA are acetylacetonate and benzoylacetonate, respectively), are obtained by CH3I oxidative addition to rhodium(I) complexes [Rh(Acac)(PPh3)2] and [Rh(BA)(PPh3)2] in acetonitrile in the presence of NaBPh4. Complexes 2 and 3 react readily with NH3 at room temperature to form cis-[Rh(Acac)(PPh3)2(CH3)(NH3)][BPh4] (4) and cis-[Rh(BA)(PPh3)2(CH3)(NH3)][BPh4] (5), respectively. Complexes 1-5 were characterized by elemental analysis, 1H and 31P{1H} NMR spectra. Complexes 1, 2, 3 and 4 were characterized by X-ray diffraction analysis. Complexes 2 and 3 in solutions (CH2Cl2, CHCl3) are presented as mixtures of cis-(PPh3)2 isomers involved into a fluxional process. Complex 2 on heating in acetonitrile is converted into trans-isomer 1. In parallel with that isomerization, reductive elimination of methyl group with formation of [CH3PPh3][BPh4] takes place. Replacement of CH3CN in complexes 1 and 2 by anion I yields in both cases the neutral complex trans-[Rh(Acac)(PPh3)2(CH3)I]. Strong trans influence of CH3 ligand manifests itself in the elongation (in solid) and labilization (in solution) of rhodium-acetonitrile nitrogen bond.  相似文献   

3.
Cationic methyl complex of rhodium(III), cis-[Rh(Acac)(PPh3)2(CH3)(Py)][BPh4] (1) as a single isomer with Py in the trans to PPh3 position, is formed upon the reaction of cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] with pyridine in methylene chloride solution.Complex 1 was characterized by elemental analysis and by 31P{1H} and 1H NMR spectra.Cationic pentacoordinate acetyl complexes, trans-[Rh(Acac)(PPh3)2(COCH3)][BPh4] (2) and trans-[Rh(BA)(PPh3)2(COCH3)][BPh4] (3), are prepared by action of carbon monoxide on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)][BPh4], respectively, in methylene chloride solutions.Complexes 2 and 3 were characterized by elemental analysis and by IR, 31P{1H}, 13C{1H} and 1H NMR. According to NMR data, 2 and 3 in solution are non-fluxional trigonal bipyramids with β-diketonate and acetyl ligands in the equatorial plane and axial phosphines.In solutions, 2 and 3 gradually isomerize into octahedral methyl carbonyl complexes trans-[Rh(Acac)(PPh3)2(CO)(CH3)][BPh4] (4) and trans-[Rh(BA)(PPh3)2(CO)(CH3)][BPh4] (5), respectively.Complexes 4 and 5 were characterized by IR, 31P{1H}, 13C{1H} and 1H NMR, without isolation.Upon the action of PPh3 on cis-[Rh(Acac)(PPh3)2(CH3)(CH3CN)][BPh4] and cis-[Rh(BA)(PPh3)2(CH3)(CH3CN)] [BPh4], reductive elimination of the methyl ligand as a phosphonium salt, [CH3PPh3][BPh4], occurs to give square planar rhodium(I) complexes [Rh(Acac)(PPh3)2] and[Rh(BA)(PPh3)2], respectively. The reaction products were identified in the reaction mixtures by 31P{1H} and 1H NMR.  相似文献   

4.
Interaction of copper(II) salts with 2,2′-dipyridylamine (1), N-cyclohexylmethyl-2,2′-dipyridylamine (2), di-2-pyridylaminomethylbenzene (3), 1,2-bis(di-2-pyridylaminomethyl)-benzene (4), 1,3-bis(di-2-pyridylaminomethyl)benzene (5), 1,4-bis(di-2-pyridylaminomethyl)benzene (6), 1,3,5-tris(di-2-pyridylaminomethyl)benzene (7) and 1,2,4,5-tetrakis(di-2-pyridylaminomethyl)benzene (8) has yielded the following complexes: [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · H2O, [Cu2(4)(NO3)4], [Cu2(5)(NO3)4] · 2CH3OH, [Cu2(6)(CH3OH)2(NO3)4], [Cu4(8)](NO3)4] · 4H2O while complexation of palladium(II) with 1, 4, 5 and 6 gave [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)Cl4], [Pd2(4)(OAc)4], [Pd2(5)Cl4], [Pd2(6)Cl4] and [Pd2(6)(OAc)4] · CH2Cl2, respectively. X-ray structures of [Cu(2)(μ-Cl)Cl]2, [Cu(3)(μ-Cl)Cl]2 · 2C2H5OH, [Cu2(6)(CH3OH)2(NO3)4], [Pd(1)2](PF6)2 · 2CH3OH, [Pd2(4)(OAc)4] · 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2 are reported. In part, the inherent flexibility of the respective ligands has resulted in the adoption of a diverse range of coordination geometries and lattice arrangements, with the structures of [Pd2(4)(OAc)4· 4H2O and [Pd2(6)(OAc)4] · 2CH2Cl2, incorporating the isomeric ligands 4 and 6, showing some common features. Liquid–liquid (H2O/CHCl3) extraction experiments involving copper(II) and 13, 5, 7and 8 show that the degree of extraction depends markedly on the number of dpa-subunits (and concomitant lipophilicity) of the ligand employed with the tetrakis-dpa derivative 8 acting as the most efficient extractant of the six ligand systems investigated.  相似文献   

5.
The new ferrocenylmethylphosphines PH(CH2Fc)2 (1) [Fc = Fe(η5-C5H5)(η5-C5H4)] and P(CH2Fc)3 (2) and the phosphonium salt [P(CH2Fc)3(CH2OH)]I (3) were synthesised from P(CH2OH)3 and [FcCH2NMe3]I. [P(CH2Fc)(CH2OH)3]Cl (4) was obtained from P(CH2Fc)(CH2OH)2, CH2O and HCl. The new phosphines and phosphonium salts were fully characterised by NMR and IR spectroscopy and MS. [Mo(CO)6] reacts with 1 to give [Mo(CO)5{PH(CH2Fc)2}] (5) in high yield, but attempts to employ 2 as a ligand failed. The reaction of [P(CH2Fc)3(CH2OH)]I (3) and [PH(CH2Fc)3]I (obtained in situ from 3 and Na2S2O5) with [WI2(CO)3(NCMe)2] gave the complex salts [P(CH2Fc)3(CH2OH)][WI3(CO)4] (6) and [PH(CH2Fc)3][WI3(CO)4] (7), respectively. [P(CH2Fc)4]I (8) was synthesized from PH2CH2Fc and [FcCH2NMe3]I. Crystal structures were obtained for 1, 3-8.  相似文献   

6.
The interaction of di(2-picolyl)amine (1) and its secondary N-substituted derivatives, N-(4-pyridylmethyl)-di(2-picolyl)amine (2), N-(4-carboxymethyl-benzyl)-di(2-picolyl)amine (3), N-(4-carboxybenzyl)-di(2-picolyl)amine (4), N-(1-naphthylmethyl)-di(2-picolyl)amine (5), N-(9-anthracenylmethyl)-di(2-picolyl)amine (6), 1,4-bis[di(2-picolyl)aminomethyl]benzene (7), 1,3-bis[di(2-picolyl)aminomethyl]benzene (8) and 2,4,6-tris[di(2-picolyl)amino]triazine (9) with Ni(II) and/or Zn(II) nitrate has resulted in the isolation of [Ni(1)(NO3)2], [Ni(2)(NO3)2], [Ni(3)(NO3)2], [Ni(4)(NO3)2]·CH3CN, [Ni(5)(NO3)2], [Ni(6)(NO3)2], [Ni2(7)(NO3)4], [Ni2(8)(NO3)4], [Ni3(9)(NO3)6]·3H2O, [Zn(3)(NO3)2]·0.5CH3OH, [Zn(5)(NO3)2], [Zn(6)(NO3)2], [Zn(8)(NO3)2] and [Zn2(9)(NO3)4]·0.5H2O. X-ray structures of [Ni(4)(NO3)2]·CH3CN, [Ni(6)(NO3)2] and [Zn(5)(NO3)2] have been obtained. Both nickel complexes exhibit related distorted octahedral coordination geometries in which 4 and 6 are tridentate and bound meridionally via their respective N3-donor sets, with the remaining coordination positions in each complex occupied by a monodentate and a bidentate nitrato ligand. For [Ni(4)(NO3)2]·CH3CN, intramolecular hydrogen bond interactions are present between the carboxylic OH group on one complex and the oxygen of a monodentate nitrate on an adjacent complex such that the complexes are linked in chains which are in turn crosslinked by intermolecular offset π-π stacking between pyridyl rings in adjacent chains. In the case of [Ni(6)(NO3)2], two weak CH?O hydrogen bonds are present between the axial methylene hydrogen atoms on one complex and the oxygen of a monodentate nitrate ligand on a second unit such that four hydrogen bonds link pairs of complexes; in addition, an extensive series of π-π stacking interactions link individual complex units throughout the crystal lattice. The X-ray structure of [Zn(5)(NO3)2] shows that the metal centre once again has a distorted six-coordinated geometry, with the N3-donor set of N-(1-naphthylmethyl)-di(2-picolyl)amine (5) coordinating in a meridional fashion and the remaining coordination positions occupied by a monodentate and a bidentate nitrato ligand. The crystal lattice is stabilized by weak intermolecular interactions between oxygens on the bound nitrato ligands and aromatic CH hydrogens on adjacent complexes; intermolecular π-π stacking between aromatic rings is also present.  相似文献   

7.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with trans-1,2-bis(2-pyridyl)ethene (C12H10N2) at room temperature in tetrahydrofuran affords the compounds [Re2(μ:η3-C12H10N2)(CO)8] (1) and the oxidative addition product [Re2(μ-H)(μ:η3-C12H9N2)(CO)7] (2). When the reaction is carried out at temperatures of refluxing tetrahydrofuran, besides compounds 1 and 2, the oxidative addition product [Re2(μ-H)(μ:η4-C12H9N2)(CO)6] (3), the insertion product [Re2(μ:η4-C12H10N2)(CO)8] (4) and [Re2(μ:η6-C24H18N4)(CO)6] (5) are obtained. Compound 5 contains the organic ligand rtct-tetrakis(2-pyridyl)cyclobutandiyl which is derived from a [2 + 2] cycloaddition of 1,2-bis(2-pyridyl)ethene mediated by its coordination to the bimetallic framework. The molecular structures of 1, 2, 4 and 5 were confirmed by X-ray crystallographic studies.  相似文献   

8.
Ligand substitution in W(CO)4(NO)(ClAlCl3) with 2-(dimethylphosphino)imidazole (dmpi) bearing an acidic NH functionality afforded W(Cl)(CO)(NO)(bdmpi)(dmpi) (1) (bdmpi = 1,2-bis(dimethyl-phosphino)imidazole), while the reaction of dmpi with W(Cl)(NO)(P(OMe)3)4 led to the isolation of W(Cl)(NO)(dmpi)4 (2) together with W(Cl)(NO)(bdmpi)(dmpi)2 (3). Attempts to replace the chloride by a hydride ligand in 1-3 applying various hydride reagents did not lead to stable products. The soluble compound W(Cl)(NO)(dmpe)(dmpi)2 (5) was prepared by an alternative route from W(Cl)(NO)[P(OMe)3)]4 via the intermediacy of W(Cl)(NO)(P(OMe)3)2(dmpe) (4). The protection of the NH function in 5 was approached applying BuLi and subsequently Me3SiCl to afford [W(Cl)(NO)(dmpe)(tmsdmpi)2] (tmsdmpi = 1-trimethylsilyl-2-dimethylphosphino-imidazole) (6) which could not be isolated in pure form. The reaction of 5 with NaHBEt3 led to the formation of a deprotonated and nitrogen-coordinated salt Na[W(NO)(dmpe)(dmpi)(tebdmpi)] (7) (tebdmpi = 2-dimethylphosphino-3-triethylboro-imidazole). Compound 7 crystallized from CH3CN to establish a one-dimensional chain structure in the solid state. The structures of compounds 1-5 and 7 were studied by single-crystal X-ray diffraction.  相似文献   

9.
Four adducts were formed by the reaction of trans-Mo(dmpe)2(H)(NO) (1) (dmpe = bis(dimethylphosphino)ethane) and a respective lithium reagent to afford, [Mo(dmpe)2(H)(NO)LiHBEt3]2 (2), [Mo(dmpe)2(H)(NO)LiN(SiMe3)2]2 (3), [Mo(dmpe)2(H)(NO)]3(LiBH4)2 (4), and {[Mo(dmpe)2(H)(NO)]2[LiBH4]5}n (5). Structures 2-5 were characterized by crystal X-ray diffraction analyses. Structures 2 and 3 revealed to be dimers of the 1:1 adduct of 1 and the lithium salt. The two nitrosyl oxygen atoms in 2 are μ2-bridged connecting two separate LiHB(C2H5)3 moieties, whereas in 3 these oxygen atoms exhibit a terminal coordination mode binding to two lithium ions of the dimeric [LiN(SiMe3)2]2 unit. Structure 4 shows a discrete structure formed by two separate mononuclear LiBH4 units being bridged by the nitrosyl oxygen atoms of three Mo(dmpe)2(H)(NO) moieties. Structure 5 displays a complicated chain structure with differently coordinated lithium centers, various types of bridging BH4 and bridging nitrosyl groups.  相似文献   

10.
The compounds [MoCl(NAr)2R] (R=CH2CMe2Ph (1) or CH2CMe3(2); Ar=2,6-Pri2C6H3) have been prepared from [MoCl2(NAr)2(dme)] (dme=1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl2(NAr)(NBut)(dme)] affords [MoCl(NAr)(NBut)(CH2CMe2Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)2(CH2CMe2Ph)] (4) (Cp=cyclopentadienyl), [MoInd(NAr)2(CH2CMe2Ph)] (5) (Ind=Indenyl), [Mo(OBut)(NAr)2(CH2CMe 2Ph)] (6), [MoMe(NAr)2(CH2CMe2Ph)] (7), [MoMe(PMe3)(NAr)2(CH2CMe 2Ph)] (8) (formed in the presence of PMe3) and [Mo(NHAr)(NAr)2(CH2CMe2P h)](9). In the latter case, a by-product {[Mo(NAr)2(CH2CMe2Ph) ]2(μ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with cis near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.  相似文献   

11.
The ruthenium-tin complex, [Ru2(CO)4(SnPh3)2(μ-pyS)2] (1), the main product of the oxidative-addition of pySSnPh3 to Ru3(CO)12 in refluxing benzene, is [Ru(CO)2(pyS)(SnPh3)] synthon. It reacts with PPh3 to give [Ru(CO)2(SnPh3)(PPh3)(κ2-pyS)] (2) and further with Ru3(CO)12 or [Os3(CO)10(NCMe)2] to afford the butterfly clusters [MRu3(CO)12(SnPh3)(μ3-pyS)] (3, M=Ru; 4, M=Os). Direct addition of pySSnPh3 to [Os3(CO)10(NCMe)2] at 70 °C gives [Os3(CO)9(SnPh3)(μ3-pyS)] (5) as the only bimetallic compound, while with unsaturated [Os3(CO)83-PPh2CH2P(Ph)C6H4}(μ-H)] the previously reported [Os3(CO)8(μ-pyS)(μ-H)(μ-dppm)] (6) and the new bimetallic cluster [Os3(CO)7(SnPh3){μ-Ph2PCH2P(Ph)C6H4}(μ-pyS)[(μ-H)] (7) are formed at 110 °C. Compounds 1, 2, 4, 5 and 7 have been characterized by X-ray diffraction studies.  相似文献   

12.
The synthesis of titanocenedichloride end-grafted carbosiloxane dendrimers of the 1st and 2nd generation is reported. To find the optimal reaction conditions, Me2ClSiH (1) was reacted with (η5-C5H4SiMe2CHCH2)(η5-C5H5)TiCl2 (2). The best result could be obtained with the Karstedt catalyst, whereby exclusively the β-isomer ((η5-C5H4SiMe2CH2CH2SiMe2Cl)(η5-C5H5)TiCl2, 3) is formed. Under similar conditions Me3SiOCH(Me)(CH2)4SiMe2H (4) reacts with 2 to give (η5-C5H4SiMe2CH2CH2SiMe2(CH2)4CH-(Me)OSiMe3)(η5-C5H5)TiCl2 (5). When using MeSi(OCH(Me)(CH2)4SiMe2H)3 (6), Si(OCH(Me)(CH2)4SiMe2H)4 (8) and MeSi[O(CH2)3SiMe(OCH(Me)(CH2)4SiMe2H)2]3 (10) instead of 1 and 4, the respective metallo dendrimers MeSi[OCH(Me)(CH2)4-SiMe2CH2CH2SiMe25-C5H4)(η5-C5H5)TiCl2]3 (7), Si[OCH(Me)(CH2)4SiMe2CH2CH2SiMe25-C5H4)(η5-C5H5)TiCl2]4 (9) and MeSi{O(CH2)3SiMe[OCH(Me)(CH2)4SiMe2CH2CH2SiMe25- C5H4)(η5-C5H5)TiCl2]2}3 (11) can be isolated.Compounds 3, 5, 7, 9 and 11 were characterised by elemental analysis as well as IR and NMR spectroscopy (1H, 13C{1H}, 29Si{1H}).  相似文献   

13.
By using the neutral bidentate nitrogen-containing ligands; bis(3,5-dimethyl-1-pyrazolyl)methane (L0″), bis(3,5-diisopropyl-1-pyrazolyl)methane (L1″), bis(3-tertiary-butyl-5-isopropyl-1-pyrazolyl)methane (L3″), and bis(3,5-ditertiary-butyl-1-pyrazolyl)methane (L4″), the copper(II) nitrato complexes [Cu(L0″)2(NO3)]NO3 (1NO3), [Cu(L0″)(NO3)2] (2), [Cu(L1″)(NO3)2] (3), [Cu(L3″)(NO3)2] (4), and [Cu(L4″)(NO3)2] (5), chloro complexes [Cu(L0″)2Cl]2(CuCl4) (6CuCl4), [Cu(L0″)2Cl]2(Cu2Cl6) (6Cu2Cl6), [Cu(L1″)Cl2] (7), and [Cu(L3″)Cl2] (8), nitrito complexes [Cu(L0″)(ONO)2] (9) and [Cu(L1″)(ONO)2] (10), and the complexes with perchlorate ions [Cu(L0″)2(CH3OH)](ClO4)2 (11ClO4) and [Cu(L1″)2(H2O)](ClO4)2 (12ClO4) were systematically synthesized and fully characterized by X-ray crystallography and by IR, far-IR, UV–Vis absorption, and ESR spectroscopy. In comparison with the obtained complexes with four bis(pyrazolyl)methanes having different bulkiness at pyrazolyl rings, the second coordination sphere effects on the ligands are discussed in detail. Moreover, the structures and physicochemical properties of these obtained complexes are compared with those of the related complexes with the neutral tridentate tris(pyrazolyl)methane ligand.  相似文献   

14.
A series of mononuclear ruthenium complexes containing pyridine- and pyrimidine-2-thiolato ligands was prepared and characterized. The new compounds of general formula CpRu(PPh3)(κ2S,N-SR) (1) (SR = pyridine-2-thiolate (a), pyrimidine-2-thiolate (b)) were prepared directly by reacting the thiolato anions (RS) with CpRu(PPh3)2Cl. Complexes 1 readily react with NOBF4 or CO in THF at room temperature to give [CpRu(PPh3)(NO)(κ1S-HSR)][BF4]2 (2) and CpRu(PPh3)(CO)(κ1S-SR) (3), respectively. The one-pot reaction of CpRu(PPh3)2Cl, thiolato anions and bis(diphenylphosphino)ethane (dppe) gave CpRu(dppe)(κ1S-SR) [dppe: Ph2PCH2CH2PPh2 (4)]. The complex salts, [CpRu(PPh3)21S-HSR)]BPh4 (5) are prepared by mixing CpRu(PPh3)2Cl, HSR and NaBPh4 at room temperature. The structures of CpRu(PPh3)(κ2S,N-Spy) (1a), [CpRu(PPh3)(NO)(κ1S-HSpy)][BF4]2 (2a) and CpRu(PPh3)(CO)(κ1S-Spy) (3a), (py = C5H4N) have been determined.  相似文献   

15.
16.
The reaction between [Ru3(CO)10(NCMe)2] and [AuClPPh3] gave compound [Ru3(CO)10(μ-Cl)(μ-AuPPh3)] (1) in quantitative yield under very mild conditions. The reaction of 1 with 4-mercaptopyridine (4-pyS) using ultrasonic reaction conditions gave the heteronuclear compound [Ru3(CO)10(μ-AuPPh3)(μ-SC5H4N)] (2) in moderate yield. There was no spectroscopic evidence that indicates the formation of the hydride isolobal analog in this reaction. The homonuclear cluster [Ru3(CO)8(μ-H)(μ-SC5H4N)(μ-dppe)] (3) was prepared by a selective reaction employing the ruthenium-diphosphine derivative [Ru3(CO)10(μ-dppe)] (dppe = 1,2-bis(diphenylphosphine)ethane) with 4-pyS in THF solution. The isolobal analog to compound 3, compound [Ru3(CO)8(μ-AuPPh3)(μ-SC5H4N)(μ-dppe)] (4) was synthesized by the reaction between compound 2 and dppe in refluxing dichloromethane. Compounds 1-4 were characterized in solution by spectroscopic methods and the molecular structure of compounds 2 and 3 in the solid state was obtained by single crystal X-ray diffraction studies.  相似文献   

17.
The reaction of a substitutionally labile dipalladium(I) complex [Pd2(CH3CN)6][BF4]2 (1) with 1,3,5,7-cyclooctatetraene (COT) in acetonitrile afforded [Pd2(μ-η33-C8H8)(CH3CN)4][BF4]2 (2). The reaction of 2 with COT in acetonitrile yielded [Pd2(μ-η33-C16H16)(CH3CN)4][BF4]2 (4), where COT is dimerized via C-C bond formation. Complexes 2 and 4 were structurally characterized by X-ray diffraction analyses. In dichloromethane, COT isomerized to styrene at room temperature in the presence of catalytic amount of 1, 2, or 4.  相似文献   

18.
Indium bis(phenolato) complexes [{In(CH3)2(THF)}2(L)] (L = 1,4-dithiabutanediylbis(4,6-di-tert-butylphenolato) (etbbp), 2) and [In(cytp)(CH3)]2 (L = (1,2-cyclohexanediyldithio)-2,2′-diphenolato (rac-cytp), 3) were prepared from [In(CH3)3] and the tetradentate 1,2-dithiaalkanediyl-bridged bis(phenol) LH2. The nature of the ligand bridging two indium centers was shown by X-ray diffraction studies of the complex [{In(CH3)2(THF)}2(etbbp)] (2) that was synthesized from complex [In(etbbp)(CH3)(THF)n] (1) by reaction with a second equivalent of [In(CH3)3]. A related ligand without bulky substituents on the aromatic rings leads to the dimeric compound [In(cytp)(CH3)]2 (3) with distorted octahedral configuration in the solid state. It was converted into the cation [In(cytp)]+ by methyl abstraction with [B(C6F5)3].  相似文献   

19.
Thermal evolution at 4 °C of the structurally characterized cis(CO)4Fe[C(O)C(O)CH3][C(O)CH3] (1(2)) gives rise to the cis(CO)4Fe[C(O)CH3]2 (1(3)) which, probably owing to synthetic problems, has never been described in the literature. By reaction with anionic nucleophiles (Nu), 1(2) affords anionic trifunctionalized metallalactones {(CO)3Fe[C(O)CH3][C(O)C(CH3)(Nu)OC7(O);(Fe-C7)]} (3) formed by addition of the nucleophile reagent on the β carbon of the pyruvoyl moiety followed by the cyclization of this ligand on a terminal carbonyl of the complex. Anions 3 are characterized by 1H and 13C NMR and by X-ray diffraction for the complex with Nu = C(H)(CO2C2H5)2. Complexes 3 are also prepared by reaction of CH3Li with the neutral metallalactones (CO)4Fe[C(O)C(CH3)(Nu)OC7(O);Fe-7C] (2). The results of this study shed light on the reaction of cyclization of a pyruvoyl ligand as they clearly show that the presence of a second ligand (for example CO2R) with a labile OR group is not required to perform the formation of the metallalactone ring and then that the observed reaction has no connection with organic chain-ring transformations.  相似文献   

20.
The compound [Os3(CO)10(μ-Cl)(μ-AuPPh3)] (2) was prepared from the reaction between [Os3(CO)10(NCMe)2] (1) and [AuClPPh3] under mild conditions. The reaction of 2 with 4-mercaptopyridine (4-pyS) ligand yielded compounds [Os3(CO)10(μ-H)(μ-SC5H4N)] (4), formed by isolobal replacement of the fragment [AuPPh3]+ by H+ and [Os3(CO)10(μ-AuPPh3)(μ-SC5H4N)] (5). [Os3(CO)10(μ-H)(μ-SC5H4N)] (4) was also obtained by substitution of two acetonitrile ligands in the activated cluster 1 by 4-pyS, at room temperature in dichloromethane. Compounds 2-5 were characterized spectroscopically and the molecular structures of 4 and 5 in the solid state were obtained by single crystal X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号