首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactions of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me) and [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) with 2-substituted-1,8-naphthyridine ligands, 2-(2-pyridyl)-1,8-naphthyridine (pyNp), 2-(2-thiazolyl)-1,8-naphthyridine (tzNp) and 2-(2-furyl)-1,8-naphthyridine (fuNp), lead to the formation of the mononuclear cationic complexes [(η6-C6H6)Ru(L)Cl]+ {L = pyNp (1); tzNp (2); fuNp (3)}, [(η6-p-iPrC6H4Me)Ru(L)Cl]+ {L = pyNp (4); tzNp (5); fuNp (6)}, [(η5-C5Me5)Rh(L)Cl]+ {L = pyNp (7); tzNp (8); fuNp (9)} and [(η5-C5Me5)Ir(L)Cl]+ {L = pyNp (10); tzNp (11); fuNp (12)}. All these complexes are isolated as chloro or hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV/Vis spectroscopy. The molecular structures of [1]Cl, [2]PF6, [4]PF6, [5]PF6 and [10]PF6 have been established by single crystal X-ray structure analysis.  相似文献   

2.
The syntheses of the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5) (M = Rh(III), Ir(III); aeaz = C2H4NC2H4NH2, az = C2H4NH (3)) containing cationic N-(2-aminoethyl)aziridine-N,N′ chelate complexes are described. The bis-aziridine complexes [MCl(Cp)(az)2]Cl (M = Rh (1), M = Ir (2)) react with an excess of the aziridine (az) in the presence of AgO3SCF3 (=AgOTf) via AgCl precipitation and az addition followed by a metal-mediated coupling reaction, to give the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5). The new aeaz ligand is formally the dimerisation product of az. Using the same reaction conditions with the analogous, but weaker Lewis acidic ruthenium(II) complex [RuCl(C6Me6)(az)2]Cl (6) an anion exchange reaction yielding [RuCl(C6Me6)(az)2]OTf (8) is observed. After purification, all compounds are fully characterized using IR, FAB-MS, 1H and 13C NMR spectroscopy. The single crystal X-ray structure analysis reveals a distorted octahedral geometry for all complexes.  相似文献   

3.
Reaction of the bis-bidentate ligand, 1,3-bis((3-(pyridin-2-yl)-1H-pyrazol-1-yl)methyl)benzene (NN∩NN), containing two chelating pyrazolyl-pyridine units connected by an aromatic spacer with platinum group metal complexes results in a series of cationic binuclear complexes, [(η6-arene)2Ru2(NN∩NN)Cl2]2+ (arene = C6H6, 1; p-iPrC6H4Me, 2; C6Me6, 3), [(η5-C5Me5)2M2(NN∩NN)Cl2]2+ (M = Rh, 4; Ir, 5), [(η5-C5H5)2M2(NN∩NN)(PPh3)2]2+ (M = Ru, 6; Os, 7), [(η5-C5Me5)2Ru2(NN∩NN)(PPh3)2]2+ (8) and [(η5-C9H7)2Ru2(NN∩NN)(PPh3)2]2+ (9). All these complexes have been isolated as their hexafluorophosphate salts and fully characterized by use of a combination of NMR spectroscopy, IR spectroscopy and mass spectrometry. The solid state structures of three complexes, [2][PF6]2, [4][PF6]2 and [6][PF6]2, has been determined by X-ray crystallographic studies.  相似文献   

4.
The dinuclear dichloro complexes [(η6-arene)2Ru2(μ-Cl)2Cl2] and [(η5-C5Me5)2M2(μ-Cl)2Cl2] react with 2-(pyridine-2-yl)thiazole (pyTz) to afford the cationic complexes [(η6-arene)Ru(pyTz)Cl]+ (arene = C6H61, p-iPrC6H4Me 2 or C6Me63) and [(η5-C5Me5)M(pyTz)Cl]+ (M = Rh 4 or Ir 5), isolated as the chloride salts. The reaction of 2 and 3 with SnCl2 leads to the dinuclear heterometallic trichlorostannyl derivatives [(η6-p-iPrC6H4Me)Ru(pyTz)(SnCl3)]+ (6) and [(η6-C6Me6)Ru(pyTz)(SnCl3)]+ (7), respectively, also isolated as the chloride salts. The molecular structures of 4, 5 and 7 have been established by single-crystal X-ray structure analyses of the corresponding hexafluorophosphate salts. The in vitro anticancer activities of the metal complexes on human ovarian cancer cell lines A2780 and A2780cisR (cisplatin-resistant), as well as their interactions with plasmid DNA and the model protein ubiquitin, have been investigated.  相似文献   

5.
Reactions of the chloro-bridged arene ruthenium complexes [{(η6-arene)RuCl(μ-Cl}2] (η6-arene = benzene, p-cymene) and structurally analogous rhodium complex [{(η5-C5Me5)RhCl(μ-Cl}2] with imidazole based ligands viz., 1-(4-nitro-phenyl)-imidazole (NOPI), 1-(4-formylphenyl)-imidazole (FPI) and 1-(4-hydroxyphenyl)-imidazole (HPI) have been investigated. The resulting complexes have been characterised by elemental analyses, IR, 1H and 13C NMR, electronic absorption and emission spectral studies. Crystal structure of the representative complex [(η5-C5Me5)RhCl2(NOPI)] has been determined crystallographically. Geometrical optimisation on the complexes have been performed using exchange correlation functional B3LYP. Optimised bond lengths and angles of the complexes have been found to be in good agreement with our earlier reports and single crystal X-ray data of the complex [(η5-C5Me5)RhCl2(NOPI)].  相似文献   

6.
Reactions of 0.5 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = η6-C6H6, η6-p-iPrC6H4Me) and [(Cp∗)M(μ-Cl)Cl]2 (M = Rh, Ir; Cp∗ = η5-C5Me5) with 4,6-disubstituted pyrazolyl-pyrimidine ligands (L) viz. 4,6-bis(pyrazolyl)pyrimidine (L1), 4,6-bis(3-methyl-pyrazolyl)pyrimidine (L2), 4,6-bis(3,5-dimethyl-pyrazolyl)pyrimidine (L3) lead to the formation of the cationic mononuclear complexes [(η6-C6H6)Ru(L)Cl]+ (L = L1, 1; L2, 2; L3, 3), [(η6-p-iPrC6H4Me)Ru(L)Cl]+ (L = L1, 4; L2, 5; L3, 6), [(Cp∗)Rh(L)Cl]+ (L = L1, 7; L2, 8; L3, 9) and [(Cp∗)Ir(L)Cl]+ (L = L1, 10; L2, 11; L3, 12), while reactions with 1.0 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 and [(Cp∗)M(μ-Cl)Cl]2 give rise to the dicationic dinuclear complexes [{(η6-C6H6)RuCl}2(L)]2+ (L = L1, 13; L2, 14; L3, 15), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (L = L1, 16; L2, 17; L3, 18), [{(Cp∗)RhCl}2(L)]2+ (L = L1, 19; L2, 20; L3, 21) and [{(Cp∗)IrCl}2(L)]2+ (L = L1 22; L2, 23; L3 24). The molecular structures of [3]PF6, [6]PF6, [7]PF6 and [18](PF6)2 have been established by single crystal X-ray structure analysis.  相似文献   

7.
The bonding modes of the ligand di‐2‐pyridyl ketoxime towards half‐sandwich arene ruthenium, Cp*Rh and Cp*Ir complexes were investigated. Di‐2‐pyridyl ketoxime {pyC(py)NOH} react with metal precursor [Cp*IrCl2]2 to give cationic oxime complexes of the general formula [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1a ) and [Cp*Ir{pyC(py)NOH}Cl]PF6 ( 1b ), for which two coordination isomers were observed by NMR spectroscopy. The molecular structures of the complexes revealed that in the major isomer the oxime nitrogen and one of the pyridine nitrogen atoms are coordinated to the central iridium atom forming a five membered metallocycle, whereas in the minor isomer both the pyridine nitrogen atoms are coordinated to the iridium atom forming a six membered metallacyclic ring. Di‐2‐pyridyl ketoxime react with [(arene)MCl2]2 to form complexes bearing formula [(p‐cymene)Ru{pyC(py)NOH}Cl]PF6 ( 2 ); [(benzene)Ru{pyC(py)NOH}Cl]PF6 ( 3 ), and [Cp*Rh{pyC(py)NOH}Cl]PF6 ( 4 ). In case of complex 3 the ligand coordinates to the metal by using oxime nitrogen and one of the pyridine nitrogen atoms, whereas in complex 4 both the pyridine nitrogen atoms are coordinated to the metal ion. The complexes were fully characterized by spectroscopic techniques.  相似文献   

8.
Reaction of Ph2PNHCH2-C4H3S with [Ru(η6-p-cymene)(μ-Cl)Cl]2, [Ru(η6-benzene)(μ-Cl)Cl]2, [Rh(μ-Cl)(cod)]2 and [Ir(η5-C5Me5)(μ-Cl)Cl]2 yields complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1, [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2, [Rh(Ph2PNHCH2-C4H3S)(cod)Cl], 3 and [Ir(Ph2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 4, respectively. All complexes were isolated from the reaction solution and fully characterized by analytical and spectroscopic methods. The structure of [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 was also determined by single crystal X-ray diffraction. 1-4 are suitable precursors forming highly active catalyst in the transfer hydrogenation of a variety of simple ketones. Notably, the catalysts obtained by using the ruthenium complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1 and [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 are much more active in the transfer hydrogenation converting the carbonyls to the corresponding alcohols in 98-99% yields (TOF ≤ 200 h−1) in comparison to analogous rhodium and iridium complexes.  相似文献   

9.
The mononuclear complexes [(η6-arene)Ru(ata)Cl]PF6 {ata = 2-acetylthiazole azine; arene = C6H6 [(1)PF6]; p-iPrC6H4Me [(2)PF6]; C6Me6 [(3)PF6]}, [(η5-C5Me5)M(ata)]PF6 {M = Rh [(4)PF6]; Ir [(5)PF6]} and [(η5-Cp)Ru(PPh3)2Cl] {η5-Cp = η5-C5H5 [(6)PF6]; η5-C5Me5 (Cp*) [(7)PF6]; η5-C9H7 (indenyl); [(8)PF6]} have been synthesised from the reaction of 2-acetylthiazole azine (ata) and the corresponding dimers [(η6-arene)Ru(μ-Cl)Cl]2, [(η5-C5Me5)M(μ-Cl)Cl]2, and [(η5-Cp)Ru(PPh3)2Cl], respectively. In addition to these complexes a hydrolysed product (9)PF6, was isolated from complex (4)PF6 in the process of crystallization. All these complexes are isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV–Vis spectroscopy. The molecular structures of [2]PF6 and [9]PF6 have been established by single-crystal X-ray structure analyses.  相似文献   

10.
Binuclear complexes [{(η5-C5Me5)RhCl}2(μ-bsh)] (1) and [{(η5-C5Me5)IrCl}2(μ-bsh)] (2) containing N,N′-bis(salicylidine)hydrazine (H2bsh) are reported. The complexes 1 and 2 reacted with EPh3 (E = P, As) to afford cationic complexes [(η5-C5Me5)Rh(PPh3)(κ2-Hbsh)]PF6 (3), [(η5-C5Me5)Rh(AsPh3)(κ2-Hbsh)]PF6 (4), [(η5-C5Me5)Ir(PPh3)(κ2-Hbsh)]PF6 (5), and [(η5-C5Me5)Ir(AsPh3)(κ2-Hbsh)]PF6 (6) which were isolated as their hexafluorophosphate salts. Representative complexes 3 and 5 have been used as a metallo-ligand in the synthesis of binuclear complexes [(η5-C5Me5)RhCl(μ-bsh)Ru(η6-C10H14)Cl]PF6 (7) and [(η5-C5Me5)IrCl(μ-bsh)Ru(η6-C10H14)Cl]PF6 (8). The complexes under study have been fully characterized by analytical and spectral (FAB/ESI-MS, IR, NMR, electronic and emission) studies. Molecular structures of 1, 2, 3 and 5 have been determined crystallographically. Structural studies on 1 and 2 revealed the presence of extensive inter- and intra-molecular C-H···O and C-H···π weak bonding interactions. The complexes 1, 2, 3 and 5 moderately emit upon excitation at their respective MLCT bands.  相似文献   

11.
Cp* Ru(η6-C6H5CHO)+OSO2CF3 (1) (Cp* = C5Me5) reacts with substituted anilines forming ruthenium Schiff base complexes containing an η6-coordinated Cp* Ru+ group. The 2:1 reaction of 1 with 1,4-phenylenediamine yielded only the monocondensation product, whereas the 2:1 reaction of 1 with 1,4-xylylenediamine yielded the dicondensation product.  相似文献   

12.
Baris Temelli 《Tetrahedron》2009,65(10):2043-6768
A new synthetic route for the synthesis of 5,10,15,20-tetraphenyl porphyrins has been developed based on the reaction of 5-substituted dipyrromethanes with N-tosyl imines in the presence of a metal triflate catalyst. meso-Substituted tetraphenyl porphyrins were synthesized in a two-step process. The first step of the method is the metal triflate-catalyzed condensation of 5-substituted dipyrromethanes with N-tosyl imines to form a porphyrinogen intermediate and the second step is the oxidation of the porphyrinogen to porphyrin. The method was applied to the synthesis of trans-A2B2-tetraarylporphyrins and the products were obtained with only a trace amount of one scrambling product. The synthesis of two important building blocks for porphyrin synthesis, mono and di-sulfonamide alkylated 5-substituted dipyrromethanes, was achieved by the addition of 5-substituted dipyrromethane to N-tosyl imine. The application of mono and di-sulfonamide alkylated 5-substituted dipyrromethanes in ‘2+2’ porphyrin formation reactions is presented.  相似文献   

13.
This Letter presents a non-conventional synthesis of meso-substituted dipyrromethanes, using molecular iodine as the catalyst. Various aromatic dipyrromethanes were obtained in good yields after a preliminary study using nitrobenzaldehyde. The reactants and reagents were used as such, without prior distillation.  相似文献   

14.
Functionalization of meso-positions of dipyrromethanes, gives valuable intermediates through a highly regioselective lithiation-substitution sequence.  相似文献   

15.
Two binuclear complexes [CpM(Cl)CarbS]2 (Cp = η5-C5Me5, M = Rh (1a), CarbS = SC2(H)B10H10, Ir (1b)) were synthesized by the reaction of LiCarbS with the dimeric metal complexes [CpMCl(μ-Cl)]2 (M = Rh, Ir). Four mononuclear complexes CpM(Cl)(L)CarbS (L = BunPPh2, M = Rh (2a), Ir (2b); L = PPh3, M = Rh (4a), Ir (4b)) were synthesized by reactions of 1a or 1b with L (L = BunPPh2 (2); PPh3 (4)) in moderate yields, respectively. Complexes 3a, 3b, 5a, 5b were obtained by treatment of 2a, 2b, 4a, 4b with AgPF6 in high yields, respectively. All of these compounds were fully characterized by IR, NMR, and elemental analysis, and the crystal structures of 1a, 1b, 2a, 2b, 4a, 4b were also confirmed by X-ray crystallography. Their structures showed 3a, 3b and 5a, 5b could be expected as good candidates for heterolytic dihydrogen activation. Preliminary experiments on the dihydrogen activation driven by these half-sandwich Rh, Ir complexes were done under mild conditions.  相似文献   

16.
N-heterocyclic bis-carbene ligand (bis-NHC) which was derived from 1,1′-diisopropyl-3,3′-ethylenediimidazolium dibromide (L·2HBr) via silver carbene transfer method, reacted with [(η6-p-cymene)RuCl2]2 and [CpMCl2]2 (Cp = η5-C5Me5, M = Ir, Rh) respectively, afforded complexes [(η6-p-cymene)RuCl2]2(L) (1), [CpIrCl2]2(L) (2) and [CpRhCl(L)][CpRhCl3] (3). When [CpIrCl2]2 was treated with 2 equiv AgOTf at first, and then reacted with bis-NHC ligand, [CpIrCl(L)]OTf (4) was obtained. The molecular structures of complexes 1-4 were determined by X-ray single crystal analysis, showing that 1 and 2 adopted bridging coordination mode, 3 and 4 adopted chelating coordination mode. All of these complexes were characterized by 1H, 13C NMR spectroscopy and element analysis.  相似文献   

17.
Reaction of the benzene-linked bis(pyrazolyl)methane ligands, 1,4-bis{bis(pyrazolyl)-methyl}benzene (L1) and 1,4-bis{bis(3-methylpyrazolyl)methyl}benzene (L2), with pentamethylcyclopentadienyl rhodium and iridium complexes [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh and Ir) in the presence of NH4PF6 results under stoichiometric control in both, mono and dinuclear complexes, [(η5-C5Me5)RhCl(L)]+ {L = L1 (1); L2 (2)}, [(η5-C5Me5)IrCl(L)]+ {L = L1 (3); L2 (4)} and [{(η5-C5Me5)RhCl}2(μ-L)]2+ {L = L1 (5); L2 (6)}, [{(η5-C5Me5)IrCl}2(μ-L)]2+ {L = L1 (7); L2 (8)}. In contrast, reaction of arene ruthenium complexes [(η6­arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6) with the same ligands (L1 or L2) gives only the dinuclear complexes [{(η6-C6H6)RuCl}2(μ-L)]2+ {L = L1 (9); L2 (10)}, [{(η6-p-iPrC6H4Me)RuCl}2(μ-L)]2+ {L = L1 (11); L2 (12)} and [{(η6-C6Me6)RuCl}2(μ-L)]2+ {L = L1 (13); L2 (14)}. All complexes were isolated as their hexafluorophosphate salts. The single-crystal X-ray crystal structure analyses of [7](PF6)2, [9](PF6)2 and [11](PF6)2 reveal a typical piano-stool geometry around the metal centers with six-membered metallo-cycle in which the 1,4-bis{bis(pyrazolyl)-methyl}benzene acts as a bis-bidentate chelating ligand.  相似文献   

18.
A series of neutral pyridine-based organochalcogen ligands, 2,6-bis(1-methylimidazole-2-thione)pyridine (Bmtp), 2,6-bis(1-isopropylimidazole-2-thione)pyridine (Bptp), and 2,6-bis(1-tert-butylimidazole-2-thione)pyridine (Bbtp) have been synthesized and characterized. Reactions of [Cp*M(μ-Cl)Cl]2 (Cp* = η5-pentamethylcyclopentadienyl, M = Ir, Rh) with three pyridine-based organochalcogen ligands result in the formation of the complexes Cp*M(L)Cl2 (M = Ir, L = Bmtp, 1a·Cl2; M = Rh, L = Bmtp, 1b·Cl2; M = Ir, L = Bptp, 2a·Cl2; M = Rh, L = Bptp, 2b·Cl2; M = Ir, L = Bbtp, 3a·Cl2; M = Rh, L = Bbtp, 3b·Cl2), respectively. All compounds have been characterized by elemental analysis, NMR and IR spectra. The molecular structures of Bbtp, 1a·Cl2, 1b·Cl2, 2b·Cl2 and 3b·Cl2 have been determined by X-ray crystallography.  相似文献   

19.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

20.
The mononuclear complexes [(η5-C5Me5)IrCl(L1)] (1), [(η5-C5Me5)RhCl(L1)] (2), [(η6-p-PriC6H4Me)RuCl(L1)] (3) and [(η6-C6Me6)RuCl(L1)] (4) have been synthesised from pyrazine-2-carboxylic acid (HL1) and the corresponding complexes [{(η5-C5Me5)IrCl2}2], [{(η5-C5Me5)RhCl2}2], [{(η6-p-PriC6H4Me)RuCl2}2], and [{(η6-C6Me6)RuCl2}2], respectively. The related dinuclear complexes [{(η5-C5Me5)IrCl}2(μ-L2)] (5), [{(η5-C5Me5)RhCl}2(μ-L2)] (6), [{(η6-p-PriC6H4Me)RuCl}2(μ-L2)] (7) and [{(η6-C6Me6)RuCl}2(μ-L2)] (8) have been obtained in a similar manner from pyrazine-2,5-dicarboxylic acid (H2L2). Compounds isomeric to the latter series, [{(η5-C5Me5)IrCl}2(μ-L3)] (9), [{(η5-C5Me5)RhCl}2(μ-L3)] (10), [{(p-PriC6H4Me)RuCl}2(μ-L3)] (11) and [{(η6-C6Me6)RuCl}2(μ-L3)] (12), have been prepared by using pyrazine-2,3-dicarboxylic acid (H2L3) instead of H2L2. The molecular structures of 2 and 3, determined by X-ray diffraction analysis, show the pyrazine-2-carboxylato moiety to act as an N,O-chelating ligand, while the structure analyses of 5-7, confirm that the pyrazine-2,5-dicarboxylato unit bridges two metal centres. The electrochemical behaviour of selected representatives has been studied by voltammetric techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号