首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model kinetic equation approximating the Boltzmann equation in a wide range of nonequilibrium gas states was constructed to describe rarefied gas flows. The kinetic model was based on a distribution function depending on the absolute velocity of the gas particles. Highly efficient in numerical computations, the model kinetic equation was used to compute a shock wave structure. The numerical results were compared with experimental data for argon.  相似文献   

2.
For rarefied gas flows at moderate and low Knudsen numbers, model equations are derived that approximate the Boltzmann equation with a linearized collision integral. The new kinetic models generalize and refine the S-model kinetic equation.  相似文献   

3.
The numerical solution of a kinetic equation for a diatomic gas (nitrogen) is used to study two-dimensional unsteady gas flows in a plane microchannel caused by discontinuous in the initial distributions of macroscopic gas parameters. The plane discontinuity fronts are perpendicular to the walls of the channel. The arising flows are model ones for gas flows in a shock tube and a microchannel. The reflection of an incident shock wave from a flat end face is studied. It is found that the gas piles up at the cold wall, which slows down the shock wave detachment. The numerical results are in qualitative agreement with experimental data.  相似文献   

4.
Computation of rarefied diatomic gas flows through a plane microchannel   总被引:1,自引:0,他引:1  
A numerical method based on a model kinetic equation was developed for computing diatomic rarefied gas flows in two dimensions. Nitrogen flows through a plane microchannel were computed, and the gas flow rate was constructed as a function of the Knudsen number for various channel lengths.  相似文献   

5.
A new model of the Boltzmann kinetic equation is constructed that describes both slow nonisothermal and Navier-Stokes continuum gas flows. The model is used to compute the slow nonisothermal flow past a circular cylinder. It is shown that the force exerted by the gas on the cylinder is affected by thermal stresses.  相似文献   

6.
A parallel multiblock implementation of a second-order accurate implicit numerical method based on solving a model kinetic equation is proposed for analyzing three-dimensional rarefied gas flows. The performance of the method is illustrated by computing test examples of gas flows in a circular pipe in a wide range of Knudsen numbers. The convergence rate and scalability of the method are analyzed depending on the number of blocks in the spatial grid.  相似文献   

7.
The method based on the numerical solution of a model kinetic equation is proposed for analyzing three-dimensional rarefied gas flows. The basic idea behind the method is the use of a second-order accurate TVD scheme on hybrid unstructured meshes in physical space and a fast implicit time discretization method without iterations at the upper level. The performance of the method is illustrated by computing test examples of three-dimensional rarefied gas flows in variously shaped channels in a wide range of Knudsen numbers.  相似文献   

8.
A system of model kinetic equations is proposed to describe flows of a diatomic rarefied gas (nitrogen). A conservative numerical method is developed for its solution. A shock wave structure in nitrogen is computed, and the results are compared with experimental data in a wide range of Mach numbers. The system of model kinetic equations is intended to compute complex-geometry three-dimensional flows of a diatomic gas with rotational degrees of freedom.  相似文献   

9.
With assumption that all the particles in the phase velocity space are concentrated on a circle and on a sphere, the circular function-based gas kinetic scheme and sphere function-based gas kinetic scheme have been developed by Shu and his coworkers [21], [22], [23]. These schemes are simpler than the Maxwellian function-based gas kinetic schemes. The simplicity is due to the fact that the integral domain of phase velocity of circular function and sphere function is a finite region while the integral domain of Maxwellian distribution function is infinite. In this work, the 1D delta function-based gas kinetic scheme is also developed to form a complete set of the simplified gas kinetic schemes. The 1D, 2D and 3D simplified gas kinetic schemes can be viewed as the truly 1D, 2D and 3D flux solvers since they are based on the multi-dimensional Boltzmann equation. On the other hand, to solve the 3D flow problem, the tangential velocities are needed to be approximated by some ways for the 1D and 2D simplified gas kinetic schemes, and to solve the 1D flow problem, the tangential velocities should be taken as zero for the 2D and 3D simplified gas kinetic schemes. The performances of these three schemes for simulation of inviscid compressible flows are investigated in this work by their application to solve the test problems from 1D to 3D cases. Numerical results showed that the efficiency of the delta function-based gas kinetic scheme is slightly superior to that of the circular function- and sphere function-based gas kinetic schemes, while its stability is inferior significantly to the latter. For simulation of the 3D hypersonic flows, the sphere function-based gas kinetic scheme could be the best choice.  相似文献   

10.
Flows of a simple rarefied gas and gas mixtures are computed on the basis of the Boltzmann kinetic equation, which is solved by applying various versions of the conservative projection method, namely, a two-point method for a simple gas and gas mixtures with a small difference between the molecular masses and a multipoint method in the case of a large mass difference. Examples of steady and unsteady flows are computed in a wide range of Mach and Knudsen numbers.  相似文献   

11.
Hypersonic flows of a viscous perfect rarefied gas over blunt bodies in a transitional flow regime from continuum to free molecular, characteristic when spacecraft re-enter Earth's atmosphere at altitudes above 90-100 km, are considered. The two-dimensional problem of hypersonic flow is investigated over a wide range of free stream Knudsen numbers using both continuum and kinetic approaches: by numerical and analytical solutions of the continuum equations, by numerical solution of the Boltzmann kinetic equation with a model collision integral in the form of the S-model, and also by the direct simulation Monte Carlo method. The continuum approach is based on the use of asymptotically correct models of a thin viscous shock layer and a viscous shock layer. A refinement of the condition for a temperature jump on the body surface is proposed for the viscous shock layer model. The continuum and kinetic solutions, and also the solutions obtained by the Monte Carlo method are compared. The effectiveness, range of application, advantages and disadvantages of the different approaches are estimated.  相似文献   

12.
A multiscale approach to computing real gas flows in engineering microchannels on high-performance computer systems in a wide range of Knudsen numbers is described. The numerical implementation of the approach combines the solution of quasigasdynamic equations and the molecular dynamics method. Following the approach, the parameters of the real gas equation of state are found at the molecular level, the kinetic gas properties are calculated, and the form of boundary conditions on the microchannel walls are determined. The technique is verified by computing several test problems. The results agree well with available theoretical and experimental data.  相似文献   

13.
A high-order accurate method for analyzing two-dimensional rarefied gas flows is proposed on the basis of a nonstationary kinetic equation in arbitrarily shaped regions. The basic idea behind the method is the use of hybrid unstructured meshes in physical space. Special attention is given to the performance of the method in a wide range of Knudsen numbers and to accurate approximations of boundary conditions. Examples calculations are provided.  相似文献   

14.
Unsteady rarefied gas flows in narrow channels accompanied by shock wave formation and propagation were studied by solving the Boltzmann kinetic equation. The formation of a shock wave from an initial discontinuity of gas parameters, its propagation, damping, and reflection from the channel end face were analyzed. The Boltzmann equation was solved using finite differences. The collision integral was calculated on a fixed velocity grid by a conservative projection method. A detector of shock wave position was developed to keep track of the wave front. Parallel computations were implemented on a cluster of computers with the use of the MPI technology. Plots of shock wave damping and detailed flow fields are presented.  相似文献   

15.
The aim of this paper is to present a kinetic numerical scheme for the computations of transient pressurised flows in closed water pipes. Firstly, we detail the mathematical model written as a conservative hyperbolic partial differentiel system of equations, and then we recall how to obtain the corresponding kinetic formulation. Then we build the kinetic scheme ensuring an upwinding of the source term due to the topography performed in a close manner described by Perthame and Simeoni (2001) [1] and Botchorishvili et al. (2003) [2] using an energetic balance at microscopic level. The validation is lastly performed in the case of a water hammer in an uniform pipe: we compare the numerical results provided by an industrial code used at EDF-CIH (France), which solves the Allievi equation (the commonly used equation for pressurised flows in pipes) by the method of characteristics, with those of the kinetic scheme. It appears that they are in a very good agreement.  相似文献   

16.
We study the class of self-similar solutions of certain multi-dimensional kinetic models of granular flows, which have been recently introduced in connection with the quasi elastic limit of a model Boltzmann equation with dissipative collisions and variable coefficient of restitution. The importance of these solutions in connection with the cooling of the dissipative gas is subsequently discussed.
Sunto Si studia la classe delle soluzioni di similarità di alcune equazioni cinetiche per flussi granulari in più dimensioni. Queste equazioni sono state introdotte di recente in connessione con il limite quasi elastico di un’ equazione di Boltzmann per collisioni dissipative con coefficiente di restituzione variabile. Nella seconda parte del lavoro si discute l’importanza di tali soluzioni nello studio del raffreddamento del gas dissipativo.
  相似文献   

17.
A BGK-type model is derived to describe the interaction between transport and chemical reactions in multispecies gas mixtures, at the kinetic level. The underlying kinetic process is modelled by a Fokker-Planck-type equation, in the Kramers-Smoluchowski limit. When the reaction terms in the kinetic equation are properly scaled, an expansion in powers of a small parameter related to the mean collison time yields a reaction-diffusion equation for the densities of the chemical species involved. For different scalings of the reaction terms, the related macroscopic equations describe the prevailing of transport processes on chemical reactions, orvice versa. The spatially homogeneous case with its own peculiarities is addressed, and the Selkov model is considered as an example.  相似文献   

18.
The Boltzmann kinetic equation is used to numerically study the evolution of separated flows over a backward-facing step at low Knudsen numbers. The Boltzmann equation is solved by applying an explicit–implicit scheme. To improve the efficiency of the solution algorithm, it is parallelized with the help of MPI. The solution obtained with the kinetic equation is compared with those based on continuous medium equations. It is shown that the kinetic approach makes it possible to reproduce the distributions of surface pressure, friction coefficient, and heat transfer, as well as to obtain a flow structure close to experimental data.  相似文献   

19.
The two-dimensional nonequilibrium hypersonic free jet boundary layer gas flow in the near wake of a body is studied using a closed system of macroscopic equations obtained (as a thin-layer version) from moment equations of kinetic origin for a polyatomic single-component gas with internal degrees of freedom. (This model is can be used to study flows with strong violations of equilibrium with respect to translational and internal degrees of freedom.) The solution of the problem under study (i.e., the kinetic model of a nonequilibrium homogeneous polyatomic gas flow in a free jet boundary layer) is shown to be related to the known solution of the well-studied simpler problem of a Navier-Stokes free jet boundary layer, and a method based on this relation is proposed for solving the former problem. It is established that the gas flow velocity distribution along the separating streamline in the kinetic problem of a free jet boundary layer coincides with the distribution obtained by solving the Navier-Stokes version of the problem. It is found that allowance for the nonequilibrium nature of the flow with respect to the internal and translational degrees of freedom of a single-component polyatomic gas in a hypersonic free jet boundary layer has no effect on the base pressure and the wake angle.  相似文献   

20.
We consider the Boltzmann equation for the model of rough spherical molecules with both translational and rotational energies. The general form of local Maxwellian distributions for this model is obtained. The main possible types of the corresponding gas flows are selected and analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号