首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study is conducted on flow past a circular cylinder fitted with a single spanwise wire on its surface. The work investigates the dependency of the critical wire locations on the wire size and Reynolds number, and examines the near wake and vortex shedding characteristics in an effort to advance the understanding of the critical wire effects beyond the existing literature. The Reynolds number is varied from 5000 to 30 000, and the wire diameter is varied from 2.9% to 5.9% of the cylinder diameter. All wires are larger than the boundary-layer thickness forming around a comparable smooth cylinder. Constant Temperature Anemometry and hydrogen bubble visualization are used as the flow diagnostic tools. The frequency and strength of the Karman instability are shown to vary with the wire location at any given Reynolds number nearly in an inverse fashion. For all the Reynolds numbers and wire sizes considered, two types of critical locations are shown to exist on the cylinder surface for the application of a wire. These locations are associated with the attenuation and amplification of the Karman instability, and in accord with the existing literature, are denoted as θc1 and θc2, respectively. The present work reveals that θc2 consists of a wide range of locations which remains unaffected from the wire size and Reynolds number, while θc1 is a relatively distinct location on the cylinder surface and depends on both the Reynolds number and wire size. For a given Reynolds number, increasing the wire size decreases θc1. For a given wire size, increasing the Reynolds number from 5000 to 15 000 increases θc1, and past 15 000, θc1 remains unaffected from the Reynolds number. When a wire is at θc1, even though, for the majority of the time the regular formation of Karman vortices ceases, the present data also reveals intermittent, short time periods where the regular shedding resumes.  相似文献   

2.
3.
Cavity flow past a circular cylinder is considered accounting for the surface tension on the cavity boundary. The fluid is assumed to be inviscid and incompressible, and the flow is assumed to be irrotational. The solution is based on two derived governing expressions, which are the complex velocity and the derivative of the complex potential defined in an auxiliary parameter region. An integral equation in the velocity magnitude along the free surface is derived from the dynamic boundary condition. The Brillouin–Villat criterion is employed to determine the location of the point of flow separation. The cases of zero surface tension and zero cavitation number are obtained as limiting cases of the solution. Numerical results concerning the effects of surface tension and cavitation development on the cavity detachment, the drag force and the geometry of the free boundaries are presented over a wide range of the Weber and the cavitation numbers.  相似文献   

4.
A slip boundary has been shown to have a significant impact on flow past bluff bodies. In this work and using a circular cylinder as a model system, the effects of various slip configurations on the passing flow are investigated. A theoretical analysis using matched-asymptotic expansion is first performed in the small-Reynolds number regime following Stokes and Oseen. A slip boundary condition is shown to lead to only higher-order effects (~1/ln(Re)) on the resulting drag coefficient. For higher Reynolds numbers (100–500), the effects of five types of symmetric slip boundary conditions, namely, no slip, fore-side slip, aft-side slip, flank slip, and all slip on the flow field and pertinent parameters are investigated with numerical simulations. Detailed results on the flow structure and force distribution are presented. Flank slip is found to have the best effect for drag reduction with comparable coverage of slip area. For asymmetric slip distributions, torque and lift are found to generally occur.  相似文献   

5.
We assess the effect of the choice of spanwise periodic length on simulations of the flow around a fixed circular cylinder. The Reynolds number is set to 400 because, at this value, both lift coefficient and shedding frequency show significant drop due to three-dimensional flow structures. From the analysis of the three-dimensionalities of the wake and of the integral quantities such as Strouhal number, RMS of lift coefficient and energy contained in the three-dimensional portion of the flow we obtain an estimate of the minimum spanwise length to satisfactorily represent the flow. Furthermore, we observe a distinct wake behavior when the spanwise length is approximately the mode B instability wavelength.  相似文献   

6.
7.
The complete Navier-Stokes equations are used to calculate supersonic perfect gas flow past a circular isothermal cylinder by the method described in [1]. The effects of the Mach number M=2.5–10 and the Reynolds number Re=30-105 on the flowfield structure and heat transfer to the cylinder wall are investigated. Special attention is paid to the study of the near wake and the local characteristics on the leeward side of the cylinder.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 107–115, November–December, 1993.  相似文献   

8.
In order to investigate the scale effect of turbulent flow around a circular cylinder, two similarity numbers (criteria) based on turbulent kinetic and dissipation rates associ- ated with the fluctuation characteristics of turbulence wake are deduced by analyzing the Reynolds averaged NavierStokes equations (RANS). The RNG k-s models and finite volume method are used to solve the governing equations and the second-order implicit time and upwind space discretization algorithms are used to discrete the governing equations. A numerical computation of flow parameters around a two-dimensional circular cylinder with Reynolds numbers ranging from 102 to l07 is accomplished and the result indicates that the fluctuation of turbulence flow along the center line in the wake of circular cylinder can never be changed with increasing Reynolds numbers when Re ≥ 3 × 10^6. This conclusion is useful for controlling the scale of numerical calculations and for applying model test data to engineering practice.  相似文献   

9.
10.
In the present study, flow control mechanism of single groove on a circular cylinder surface is presented experimentally using Particle image velocimetry (PIV). A square shaped groove is patterned longitudinally on the surface of the cylinder with a diameter of 50 mm. The flow characteristics are studied as a function of angular position of the groove from the forward stagnation point of the cylinder within 0°  θ  150°. In the current work, instantaneous and time-averaged flow data such as vorticity, ω streamline, Ψ streamwise, u/Uo and transverse, v/Uo velocity components, turbulent kinetic energy, TKE and RMS of streamwise, urms and transverse, vrms velocity components are utilized in order to present the results of quantitative analyses. Furthermore, Strouhal numbers are calculated using Karman vortex shedding frequency, fk obtained from single point spectral analysis. It is concluded that a critical angular position of the groove, θ = 80° is observed. The flow separation is controlled within 0°  θ < 80°. At θ = 80°, the flow separation starts to occur in the upstream direction. The instability within the shear layer is also induced on grooved side of the cylinder with frequencies different than Karman vortex shedding frequency, fk.  相似文献   

11.
IntroductionTheunsteadyflowpastacircularcylinderhasreceivedagreatdealofattentionowingmainlytoitstheoreticalandpracticalsignificance .Theflowgeneratedbytheoscillationofthecylinder,oroscillatingflowsaroundthecylinder,canbecharacterizedbytwoparameters.OneistheKeulegan_Carpenternumber,definedasKC =UmT/D ,andtheotheristheReynoldsnumberRe=UmD/ν,orafrequencyparameter,definedasβ=D2 / (νT) =Re/KC) ,whichisoftenusedtoreplacetheReynoldsnumberasthesecondparameter.Here,Umisthemaximumvelocityofth…  相似文献   

12.
The influence of a dilute solution of the cationic surfactant C14Sal on the flow past a cylinder was investigated by means of LDV and Toepler Schlieren optics for visualization of both the flow and structure of the fluid. At low Reynolds numbers the flow is similar to the Newtonian Kármán vortex street. The periodic vortex shedding disappears simultaneously with the occurrence of a shear-induced structure. The alteration of the turbulence characteristics is especially pronounced in the turbulent velocity fluctuations with the u rms being many times over the values in water, whereas the v rms are drastically reduced. Received: 18 May 2000 / Accepted: 25 July 2000  相似文献   

13.
14.
Effect of blockage on spanwise correlation in a circular cylinder wake   总被引:1,自引:0,他引:1  
A short series of experiments was conducted with the aim of assessing the possible effect of tunnel blockage on spanwise correlation lengths measured in the near-wake of a circular cylinder. The results indicate that increasing blockage acts to increase spanwise correlation. This finding has important implications for the conduct and reporting of both physical and numerical experiments on bluff-body wake flows.  相似文献   

15.
The effect of location of the lateral boundaries, of the computational domain, on the critical parameters for the instability of the flow past a circular cylinder is investigated. Linear stability analysis of the governing equations for incompressible flows is carried out via a stabilized finite element method to predict the primary instability of the wake. The generalized eigenvalue problem resulting from the finite element discretization of the equations is solved using a subspace iteration method to get the most unstable eigenmode. Computations are carried out for a large range of blockage, 0.005?D/H ?0.125, where D is the diameter of the cylinder and H is the lateral width of the domain. A non‐monotonic variation of the critical Re with the blockage is observed. It is found that as the blockage increases, the critical Re for the onset of the instability first decreases and then increases. However, a monotonic increase in the non‐dimensional shedding frequency at the onset of instability, with increase in blockage, is observed. The increased blockage damps out the low‐frequency modes giving way to higher frequency modes. The blockage is found to play an important role in the scatter in the data for the non‐dimensional vortex shedding frequency at the onset of the instability, from various researchers in the past. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The no‐slip condition is an assumption that cannot be derived from first principles and a growing number of literatures replace the no‐slip condition with partial‐slip condition, or Navier‐slip condition. In this study, the influence of partial‐slip boundary conditions on the laminar flow properties past a circular cylinder was examined. Shallow‐water equations are solved by using the finite element method accommodating SU/PG scheme. Four Reynolds numbers (20, 40, 80, and 100) and six slip lengths were considered in the numerical simulation to investigate the effects of slip length and Reynolds number on characteristic parameters such as wall vorticity, drag coefficient, separation angle, wake length, velocity distributions on and behind the cylinder, lift coefficient, and Strouhal number. The simulation results revealed that as the slip length increases, the drag coefficient decreases since the frictional component of drag is reduced, and the shear layer developed along the cylinder surface tends to push the separation point away toward the rear stagnation point so that it has larger separation angle than that of the no‐slip condition. The length of the wake bubble zone was shortened by the combined effects of the reduced wall vorticity and wall shear stress which caused a shift of the reattachment point closer to the cylinder. The frequency of the asymmetrical vortex formation with partial slip velocity was increased due to the intrinsic inertial effect of the Navier‐slip condition. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
An explicit solution is found for the problem of uniform horizontal flow of a two-layer fluid of infinite depth past a circular cylinder. The cylinder axis is perpendicular to the flow. The problem is solved within a linear formulation. The solution of the problem is expressed in the form of rapidly converging series with coefficients determined from a recurrence relation. The first seven terms of the series yield the values of the hydrodynamic loads with a relative accuracy of 10–6. The results are in good agreement with the known values for similar problems in a homogeneous fluid. Tables of the lift and wave drag are given for homogeneous and two-layer fluids.Novosibirsk. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 91–97, January–February, 1996.  相似文献   

18.
Solutions are presented for the Stokes flow past finite axial assemblages of up to 9 spheres in an infinitely long cylindrical tube for a wide range of sphere spacings and sphere to cylinder diameter ratios. General solutions are constructed from the fundamental solutions to the governing equation in both the cylindrical and spherical coordinate systems. No-slip boundary conditions are enforced on the tube surface by constructing the Fourier transform of the general disturbance created by the spheres, as detected on the cylinder wall. The boundary conditions are then applied on the sphere surfaces by a previously developed series truncation technique.The calculated drag forces and zero-drag velocities demonstrate the interparticle interaction effects, the sphere-wall interactions, and the effects of wall damping on the inter-particle shielding phenomenon.  相似文献   

19.
An experimental investigation of a passively controlled open cavity with a length to depth ratio of six and freestream Mach number of 1.4 was conducted to investigate the mechanisms responsible for the observed surface pressure reductions. The passive control comes from placing a spanwise aligned cylinder in the boundary layer near the leading edge of the cavity. The two control configurations were isolated from previous experiments of the fluctuating surface pressure and correspond to a larger diameter rod near the top of the boundary layer and a smaller diameter rod placed near the wall. These were further analyzed using particle image velocimetry in an attempt to elicit the responsible mechanism for the flow control. The use of two-point statistics revealed the wall normal turbulent velocity correlation’s evolution became elongated in the wall normal direction. This suggests that the shear layer may be less-organized and consists of smaller-scale structures. The disturbance of the feedback receptivity loop is clearly demonstrated for the controlled configurations evidenced by weakened correlation signals between the aft wall sensor and positions on the cavity floor. The presence of the rod is shown to decrease the mean shear gradient, more effectively for the large rod placed at the top of the boundary layer, throughout the shear layer. The efficacy of the control leads to an initially thicker shear layer which spreads more rapidly and is clearly demonstrated by vorticity growth rates, mean, and turbulent flowfield statistics.  相似文献   

20.
The two‐dimensional flows past a circular cylinder near a moving wall are simulated by lattice Boltzmann method. The wall moves at the inlet velocity and the Reynolds number ranges from 300 to 500. The influence of the moving wall on the flow patterns is demonstrated and the corresponding mechanism is illustrated by using instability theory. The correlations among flow features based on gap ratio are interpreted. Force coefficients, velocity profile and vortex structure are analyzed to determine the critical gap ratio. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号