首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 719 毫秒
1.
Uncooled microbolometer detector: recent developments at ULIS   总被引:1,自引:0,他引:1  
Uncooled infrared focal plane arrays are being developed for a wide range of thermal imaging applications. Fire-fighting, predictive maintenance, process control and thermography are a few of the industrial applications which could take benefit from uncooled infrared detector. Therefore, to answer these markets, a 35-μm pixel-pitch uncooled IR detector technology has been developed enabling high performance 160×120 and 384×288 arrays production. Besides a wide-band version from uncooled 320×240/45 μm array has been also developed in order to address process control and more precisely industrial furnaces control. The ULIS amorphous silicon technology is well adapted to manufacture low cost detector in mass production. After some brief microbolometer technological background, we present the characterization of 35 μm pixel-pitch detector as well as the wide-band 320×240 infrared focal plane arrays with a pixel pitch of 45 μm. The paper presented there appears in Infrared Photoelectronics, edited by Antoni Rogalski, Eustace L. Dereniak, Fiodor F. Sizov, Proc. SPIE Vol. 5957, 59570M (2005).  相似文献   

2.
A 9 μm cutoff 640 × 512 pixel hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated with excellent imagery. A noise equivalent differential temperature (NEDT) of 10.6 mK is expected at a 65 K operating temperature with f/2 optics at a 300 K background. This focal plane array has shown background limited performance at a 72 K operating temperature with the same optics and background conditions. In this paper, we discuss the development of this very sensitive long-wavelength infrared camera based on a GaAs/AlGaAs QWIP focal plane array and its performance in quantum efficiency, NEDT, uniformity, and operability. In the second section of this paper, we discuss the first demonstration of a monolithic spatially separated four-band 640 × 512 pixel QWIP focal plane array and its performance. The four spectral bands cover 4–5.5, 8.5–10, 10–12, and 13.5–15 μm spectral regions with 640 × 128 pixels in each band. In the last section, we discuss the array performance of a 640 × 512 pixel broad-band (10–16 μm full-width at half-maximum) QWIP focal plane.  相似文献   

3.
In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a 1,024 × 1,024 (1K × 1K), 8–12  μm infrared focal plane array (FPA). This 1 megapixel detector array is a hybrid using an L3/Cincinnati Electronics silicon readout integrated circuit (ROIC) bump bonded to a GaAs QWIP array fabricated jointly by engineers at the Goddard Space Flight Center (GSFC) and the Army Research Laboratory (ARL). We have integrated the 1K × 1K array into an SE-IR based imaging camera system and performed tests over the 50–80 K temperature range achieving BLIP performance at an operating temperature of 57 K. The GaAs array is relatively easy to fabricate once the superlattice structure of the quantum wells has been defined and grown. The overall arrays costs are currently dominated by the costs associated with the silicon readout since the GaAs array fabrication is based on high yield, well-established GaAs processing capabilities. One of the advantages of GaAs QWIP technology is the ability to fabricate arrays in a fashion similar to and compatible with silicon IC technology. The designer’s ability to easily select the spectral response of the material from 3 μm to beyond 15 μm is the result of the success of band-gap engineering and the Army Research Lab is a leader in this area. In this paper we will present the first results of our 1K × 1K QWIP array development including fabrication methodology, test data and imaging capabilities.  相似文献   

4.
Four-band quantum well infrared photodetector array   总被引:4,自引:0,他引:4  
A four-band quantum well infrared photodetector (QWIP) focal plane array (FPA) has been demonstrated by stacking different multi-quantum well structures, which are sensitive in 4–5.5, 8.5–10, 10–12, and 13–15.5 μm infrared bands. This 640 × 514 format FPA consists of four 640 × 128 pixel areas which are capable of acquiring images in these infrared bands. In this application, instead of quarter wevelength groove depth grating reflectors, three-quarter wavelength groove depth reflectors were used to couple radiation to each QWIP layer. This technique allows us to optimize the light coupling to each QWIP stack at corresponding pixels while keeping the pixel (or mesa) height at the same level, which will be essential for indium bump-bonding with the multiplexer. In addition to light coupling, these gratings serve as a contact to the active stack while shorting the unwanted stacks. Flexible QWIP design parameters, such as well width, barrier thickness, doping density, and the number of periods, were cleverly exploited to optimize the performance of each detector while accommodating requirements set by the deep groove light coupling gratings. For imaging, detector array is operated at temperature T=45 K, and each detector shows a very high D*>1×1011 cm  /W for 300 K background with f/2 optics. This initial array gave excellent images with 99.9% of the pixels working, demonstrating the high yield of GaAs technology.  相似文献   

5.
Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 1024 × 1024 pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEΔT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEΔT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In addition, we have demonstrated MWIR and LWIR pixel co-registered simultaneously readable dualband QWIP focal plane arrays. In this paper, we will discuss the performance in terms of quantum efficiency, NEΔT, uniformity, operability, and modulation transfer functions of the 1024 × 1024 pixel arrays and the progress of dualband QWIP focal plane array development work.  相似文献   

6.
非制冷高变倍比连续变焦光学系统的设计   总被引:3,自引:0,他引:3       下载免费PDF全文
张良  刘红霞 《应用光学》2012,33(2):250-254
针对长波非制冷氧化钒320240像元焦平面阵列探测器,像元间距25 m25 m,采用变焦距光学系统设计原理,引入非球面和衍射面设计技术进行像差平衡,设计了长波红外连续变焦光学系统。该系统工作波段为8 m~12 m,视场为2.86~50连续可变,F数为1.2,变倍比为18∶1,在整个变焦范围内,光学调制传递函数在0.5以上,接近衍射极限,并且全视场能量70%集中在探测器的一个像元内。整个变焦光学系统仅使用一种红外材料(单晶锗)进行像差矫正。  相似文献   

7.
In the on-going evolution of GaAs quantum well infrared photodetectors (QWIPs) we have developed a four band, 640 × 512, 23 μm × 23 μm pixel array which we have subsequently integrated with a linear variable etalon (LVE) filter providing over 200 spectral bands across the 4–15.4 μm wavelength region. This effort was a collaboration between NASA’s Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL) and the Army Research Laboratory (ARL) sponsored by the Earth Science Technology Office of NASA. The QWIP array was fabricated by graded molecular beam epitaxial (MBE) growth that was specifically tailored to yield four distinct bands (FWHM): Band 1; 4.5–5.7 μm, Band 2; 8.5–10 μm, Band 3; 10–12 μm and Band 4; 13.3–14.8 μm. Each band occupies a swath that comprises 128 × 640 elements. The addition of the LVE (which is placed directly over the array) further divides the four “broad” bands into 209 separate spectral bands ranging in width from 0.02 μm at 5 μm to 0.05 μm at 15 μm. The detector is cooled by a mechanical cryocooler to 46 K. The camera system is a fully reflective, f/4.2, 3-mirror system with a 21° × 25° field of view. The project goals were: (1) develop the 4 band GaAs QWIP array; (2) develop the LVE and; (3) implement a mechanical cryocooler. This paper will describe the efforts and results of this undertaking with emphasis on the overall system characteristics.  相似文献   

8.
介绍用非晶硅微型辐射热量计制成的160×120元非致冷红外焦平面阵列的特点和性能,该阵列集成在一个无铅芯片载体封装中,像素间距为25μm,适合于大批量生产。 25μm像元结构得益于较小的热时间常数,该技术使我们能够设计出更高的热隔离性能,从而能以35μm技术为基础开发出25μm技术。通过采用新的像素设计和更进一步推动设计方法,在没有采用复杂昂贵的双层结构的前提下,保持了较高填充因子。从读出集成电路结构、封装、可操作性和光电性能入手对该探测器进行了介绍。为该探测器设计了一种新型集成读出电路。可以通过串行链接对增益、图像翻转和积分时间等高级功能进行操控,降低电气对接的数量。研制的小型无铅芯片载体封装便于大规模生产探测器,主要用途为便携式摄像机或头盔摄像机。  相似文献   

9.
介绍用非晶硅微型辐射热量计制成的160×120元非致冷红外焦平面阵列的特点和性能,该阵列集成在一个无铅芯片载体封装中,像素间距为25μm,适合于大批量生产。25μm像元结构得益于较小的热时间常数,该技术使我们能够设计出更高的热隔离性能,从而能以35μm技术为基础开发出25μm技术。通过采用新的像素设计和更进一步推动设计方法,在没有采用复杂昂贵的双层结构的前提下,保持了较高填充因子。从读出集成电路结构、封装、可操作性和光电性能入手对该探测器进行了介绍。为该探测器设计了一种新型集成读出电路。可以通过串行链接对增益、图像翻转和积分时间等高级功能进行操控,降低电气对接的数量。研制的小型无铅芯片载体封装便于大规模生产探测器,主要用途为便携式摄像机或头盔摄像机。  相似文献   

10.
A multi-band focal plane array sensitive in near-infrared (near-IR) and mid-wavelength infrared (MWIR) is been developed by monolithically integrating a near-infrared (1–1.5 μm) p–i–n photodiode with a mid-infrared (3–5 μm) QWIP. This multiband detector involves both intersubband and interband transitions in III–V semiconductor layer structures. Each detector stack absorbs photons within the specified wavelength band, while allowing the transmission of photons in other spectral bands, thus efficiently permitting multiband detection. Monolithically grown material characterization data and individual detector test results ensure the high quality of material suitable for near-infrared/QWIP dual-band focal plane array.  相似文献   

11.
Recent results obtained on building blocks for future third generation infrared focal plane arrays (FPAs) are presented. Our approach concerning the FPA performance assessment and small pixels modelling is exposed. We also demonstrate the ability of the quantum well infrared photodetector technology to answer the needs for compact (20 μm pitch) polarimetric FPAs. Finally, we present our first results on mid-wave infrared detectors at wavelengths below 4.2 μm.  相似文献   

12.
The present work deals with the calibration of a focal plane array infrared camera whose detector is a matrix of 320×244 PtSi sensors active in the range 3.6–5 μm. The calibration curve has been obtained by measuring the energy emitted by a blackbody, consisting in a copper cylindric cavity with isothermal walls. The results, obtained in the temperature range 10–70 °C, enable us to investigate the nature of the noise which affects the measurements. The aim is to suggest a data processing and a calibration technique in order to enhance the image quality and the instrument response as well. The effects of random uncertainties have been reduced by using Wiener filtration, which enables us to improve the signal to noise ratio. The problem caused by the nonuniform response of the detector array has been handled by using a different calibration curve for each sensor. The effectiveness of this procedure has been checked by comparing the frequency histograms of the raw and the processed signal. The investigation enables us to highlight some peculiar features of the new focal plane array technology employed in the new generation infrared cameras.  相似文献   

13.
We have exploited the artificial atom-like properties of epitaxially grown self-assembled quantum dots (QDs) for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays (FPAs). QD infrared photodetectors (QDIPs) are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II–VI material based FPAs. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR dot-in-a-well (DWELL) structures based on the InAs/InGaAs/GaAs material system. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. DWELL QDIPs were also experimentally shown to absorb both 45° and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. The most recent devices exhibit peak responsivity out to 8.1 μm. Peak detectivity of the 8.1 μm devices has reached 1 × 1010 Jones at 77 K. Furthermore, we have fabricated the first long-wavelength 640 × 512 pixels QDIP imaging FPA. This QDIP FPA has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60 K operating temperature.  相似文献   

14.
Previously, we demonstrated a large format 1024 × 1024 corrugated quantum well infrared photodetector focal plane array (C-QWIP FPA). The FPA has a cutoff at 8.6 μm and is BLIP at 76 K with f/1.8 optics. The pixel had a shallow trapezoidal geometry that simplified processing but limited the quantum efficiency QE. In this paper, we will present two approaches to achieve a larger QE for the C-QWIPs. The first approach increases the size of the corrugations for more active volume and adopts a nearly triangular pixel geometry for larger light reflecting surfaces. With these improvements, QE is predicted to be about 35% for a pair of inclined sidewalls, which is more than twice the previous value. The second approach is to use Fabry–Perot resonant oscillations inside the corrugated cavities to enhance the vertical electric field strength. With this approach, a larger QE of 50% can be achieved within certain spectral regions without using either very thick active layers or anti-reflection coatings. The former approach has been adopted to produce two FPAs, and the preliminary experimental results will be discussed. In this paper, we also describe using voltage tunable detector materials to achieve multi-color capability for these FPAs.  相似文献   

15.
利用折衍混合结构设计了超宽温范围内的光学被动式消热差Petzval物镜,系统工作波段为3.2~4.5 m,视场角为8.42,焦距为95 mm,后工作距为60.5 mm。使用锗和硅两种材料,引入了2个非球面和1个衍射面, 实现了消热差和结构简单轻量化,该系统在-80~200 ℃范围内, 调制传递函数(MTF) 优于0.7,接近衍射极限, 成像质量良好,该系统适用于像元尺寸为35 m、像元数320240的非制冷红外焦平面阵列探测器。  相似文献   

16.
Planarization of CMOS ROIC dies for uncooled detectors   总被引:1,自引:0,他引:1  
This paper presents a planarization procedure to achieve a flat CMOS surface of Readout Integrated Circuit (ROIC) for the integration between uncooled infrared detector arrays and ROIC. The CMOS fabrication process produces about 2 μm surface roughness on the silicon wafer, so the CMOS dies must be first planarized before integration with the detector arrays. To acquire a satisfying surface roughness in the small CMOS die, three commercially available polymers including bisbenzocyclobutene (BCB) and two types of polyimides are evaluated in our experiments. BCB shows the best results for our applications. A single layer of BCB coating successfully reduce the surface topology from 2 μm to less than 1500 Å and two layers of BCB coating reduce the surface topology to about 600 Å.  相似文献   

17.
介绍了硫系红外玻璃的组成成分,分析了其独特的优势,建立了红外热成像系统中各个参数和温度之间关系的数学模型。基于硫系玻璃折射率温度系数小、成本低的优点,将硫系玻璃应用于红外热成像探测系统,并给出了一种折射式的中波红外热成像消热差探测系统实例,评价结果表明,该系统在低温-40 ℃、常温20 ℃、高温60 ℃都取得了良好的成像质量,适用于像元数为320 pixel×256 pixel,像元尺寸为30 μm×30 μm的中波红外凝视型焦平面阵列探测器。  相似文献   

18.
操超  廖志远  白瑜  廖胜  范真节 《应用光学》2018,39(6):773-779
针对传统红外连续变焦系统难以同时满足高变倍比和大相对口径的使用要求,通过采用复合变焦光学系统结构,增加传统红外连续变焦光学系统的变焦距范围和相对口径。基于长波红外320×240像元、25 μm×25 μm非制冷焦平面探测器,设计了一款高变倍比大相对口径长波红外变焦光学系统, 光学系统由一个连续变焦部分与两档变焦部分组成,通过引入衍射光学元件校正长焦端色差,工作波段为8 μm~12 μm,焦距变化范围为-9 mm~-272.25 mm,F数为1.4。该系统具有成像质量好、变倍比高、相对口径大、导程小和凸轮曲线平滑等优点。  相似文献   

19.
InAs/GaAs quantum dot infrared photodetectors were fabricated with quantum dots grown at three different temperatures. Large detection wavelength shift (5–14.5 μm) was demonstrated by changing 40 degrees of the epitaxy temperature. The smaller quantum dots grown at lower temperature generate 14.5 μm responses. The detectivity of the normal incident 15 μm QDIP at 77 K is 3 × 108 cm Hz1/2/W. A three-color detector was also demonstrated with quantum dots grown at medium temperature. The three-color detection comes from two groups of different sizes of dots within one QD layer. This new type of multicolor detector shows unique temperature tuning behavior that was never reported before.  相似文献   

20.
We report on the status of GaSb/InAs type-II superlattice diodes grown and fabricated at the Jet Propulsion Laboratory designed for infrared absorption 2–5 μm and 8–12 μm bands. Recent LWIR devices have produced detectivities as high as 8 × 1010 Jones with a differential resistance–area product greater than 6 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 12 μm. The measured internal quantum efficiency of these front-side illuminated devices is close to 30% in the 10–11 μm range. MWIR devices have produced detectivities as high as 8 × 1013 Jones with a differential resistance–area product greater than 3 × 107 Ohm cm2 at 80 K with a long wavelength cutoff of approximately 3.7 μm. The measured internal quantum efficiency of these front-side illuminated MWIR devices is close to 40% in the 2–3 μm range at low temperature and increases to over 60% near room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号