首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, a simplified model of the Fe(111) surface’s promoter-oxide system was investigated in order to experimentally verify the previously proposed and known models concerning the structure and chemical composition of the surfaces of iron nanocrystallites in the ammonia-synthesis catalyst. It was shown that efficient oxygen diffusion from metal oxides to the clean Fe(111) iron surface took place even at temperatures lower than 100 °C. The effective wetting of the iron surface by potassium oxide is possible when the surface is covered with oxygen at temperatures above 250 °C. In the TOF-SIMS spectra of the surface of iron wetted with potassium, an emission of secondary FeOK+ ions was observed that implies that potassium atoms are bound to the iron surface atoms through oxygen. As a result of further wetting the iron surface with potassium ions, a heterogeneous surface structure was formed consisting of a thin K2O layer, next to which there was an iron-oxide phase covered with potassium ions. Only a limited increase in calcium concentration was observed on the Fe(111) iron surface upon sample annealing at up to 350 °C. As a result of wetting the iron surface with calcium ions, an oxide solution of CaO-FexOy was formed. In the annealing process of the sample containing alumina, only traces of this promoter diffusing to the iron surface were observed. Alumina formed a solution with a passive layer on the iron surface and under the process conditions (350 °C) it did not wet the pure iron (111) surface. The decrease in Fe+-ion emission from the Fe-Ca and Fe-Al samples at 350 °C implies a reduction in the oxygen concentration on the sample surface at this temperature.  相似文献   

2.
The nature of hydrated protons is an important topic in the fundamental study of electrode processes in acidic environment. For example, it is not yet clear whether hydrated protons are formed in the solution or on the electrode surface in the hydrogen evolution reaction on a Pt electrode. Using mass spectrometry and infrared spectroscopy, we show that hydrogen atoms are converted into hydrated protons directly on a Pt(111) surface coadsorbed with hydrogen and water in ultrahigh vacuum. The hydrated protons are preferentially stabilized as multiply hydrated species (H5O2+ and H7O3+) rather than as hydronium (H3O+) ions. These surface‐bound hydrated protons may play an important role in the interconversion between adsorbed hydrogen atoms and solvated protons in solution.  相似文献   

3.
The gas-phase ion chemistry of protonated O,O-diethyl O-aryl phosphorothionates was studied with tandem mass spectrometric and ab initio theoretical methods. Collision-activated dissociation (CAD) experiments were performed for the [M+H]+ ions on a triple quadrupole mass spectrometer. Various amounts of internal energy were deposited into the ions upon CAD by variation of the collision energy and collision gas pressure. In addition to isobutane, deuterated isobutane C4D10 also was used as reagent gas in chemical ionization. The daughter ions [M+H?C2H4]+ and [M+H?2C2H4]+ dominate the CAD spectra. These fragments arise via various pathways, each of which involves γ-proton migration. Formation of the terminal ions [M+H?2C2H4?H2O]+, [M+H?2C2H4?H2S]+, [ZPhOH2]+, [ZPhSH2]+, and [ZPhS]+ [Z = substituent(s) on the benzene ring] suggests that (1) the fragmenting [M+H]+ ions of O,O-diethyl O-aryl phosphorothionates have protons attached on the oxygen of an ethoxy group and on the oxygen of the phenoxy group; (2) thiono-thiolo rearrangement by aryl migration to sulfur occurs; (3) the fragmenting rear-ranged [M+H]+ ions have protons attached on the oxygen of an ethoxy group and on the sulfur of the thiophenoxy group. To get additional support for our interpretation of the mass spectrometric results, some characteristics of three protomers of O,O-diethyl O-phenyl phosphorothionate were investigated by carrying out ab initio molecular orbital calculations at the RHF/3–21G* level of theory.  相似文献   

4.
Generating high surface area mesoporous transition metal boride is interesting because the incorporation of boron atoms generates lattice distortions that lead to the formation of amorphous metal boride with unique properties in catalysis. Here we report the first synthesis of mesoporous cobalt boron amorphous alloy colloidal particles using a soft template-directed assembly approach. Dual reducing agents are used to precisely control the chemical reduction process of mesoporous cobalt boron nanospheres. The Earth-abundance of cobalt boride combined with the high surface area and mesoporous nanoarchitecture enables solar-energy efficient photothermal conversion of CO2 into CO compared to non-porous cobalt boron alloys and commercial cobalt catalysts.

Generating high surface area mesoporous transition metal boride is challenging but interesting because incorporation of boron atoms can generate lattice distortion to form amorphous metal boride which has unique properties in catalysis.  相似文献   

5.
Gas-phase interactions of peptides that contain cysteine with iron(II) atoms were examined by using fast-atom bombardment and tandem mass spectrometry. Specific and strong interactions of iron and sulfur from the thiol group of the cysteine side chain occur in the gas phase and are the basis for highly specific fragmentation to give abundant [a n ?+ ions. For peptides that contain two cysteines, an internal ion, which results from the interaction of Fe and both thiol groups, is formed upon collisional activation. The mechanism for the formation of [a n ?2H+Fe]+ fragment ions requires the metal to be coordinated at sulfur in close proximity to the site of reaction. Iron-bis(pentapeptide) complexes, which form under the same conditions, decompose predominantly to lose a pentapeptide molecule and, to a lesser extent, to give [a a ?2H+Fe]+ ions.  相似文献   

6.
Based on the features of the structure of B5H11 and other known boranes, the possibility of the existence of a new structure type—LiB9 (hexagonal, space group P63 cm, a = 0.565 nm, c = 0.504 nm, Z = 2, d = 2.49 g/cm3)—was predicted. The basal plane contains perforated deltahedral layers of boron atoms with delocalized electrons combined into a framework by fixed 3c2e bonds. Discrete, almost cylindrical channels accommodating Li+ cations are perpendicular to the layers. Thermal or electrochemical removal of part of lithium should be favorable for the appearance or buildup of the cationic conductivity with the possible intermediate formation of lithium incommensurate phase. Valence-scheme analysis of boride layers revealed low-barrier hole bipolaron conductivity within the layers and considerable hindrance to interlayer electron transport.  相似文献   

7.
Freshly deposited discharge-produced tetrafluoroethylene films were ion-etched with either helium, neon, argon, oxygen or hydrogen. The ions C+, CF+, CF2+ and CF3+ comprised most of the positive ions in rare gas discharges, with CF+ always dominant. Sputtered fragments containing two or more carbon atoms were rare. These findings are compatible with the ion-etching of a highly crosslinked polymer film. Residual background gases were contributed to 1–3% of the total ion flux even though their actual partial pressures were very low. The concentration of neutral species corresponding to the ions observed was less than one part in ten thousand of the etching gas. With pure hydrogen, very little etching occurred and the degree of ionization relative to the rare gases was low. The principal reaction was the abstraction of fluorine from the polymer to give hydrogen fluoride and a more highly crosslinked film. Oxygen containing discharges produced the largest total yield of all the systems studied and the most evidence of chemical attack on the polymer. The ions observed were CO+, CO2+, COF+, COF2+ as well as C+, CF+, CF2+ and CF3+. Thus oxygen etches the polymer by preferentially attacking the carbon-carbon framework.  相似文献   

8.
The formation of ions following the termination of power in a pulsed glow discharge ion source is investigated. The populations of ionized species containing sputtered atoms M+, M 2 1 :, and MAr+ are observed to maximize after the termination of discharge power. Collisions involving sputtered atoms and metastable argon atoms, Penning and associative ionization, are considered to be responsible for the formation of ions in the discharge afterpeak time regime. The domination of these ion formation processes during the afterpeak time regime is supported by the results from investigations of discharge operating parameters, metastable argon atom quenching, and ion kinetic energy distributions.  相似文献   

9.
A hybrid model is developed for describing the effects of oxygen addition to argon glow discharges. The species taken into account in the model include Ar atoms in the ground state and the metastable level, O2 gas molecules in the ground state and two metastable levels, O atoms in the ground state and one metastable level, O3 molecules, Ar+, O+, O2+ and O? ions, as well as the electrons. The hybrid model consists of a Monte Carlo model for electrons and fluid models for the other plasma species. In total, 87 different reactions between the various plasma species are taken into account. Calculation results include the species densities and the importance of their production and loss processes, as well as the dissociation degree of oxygen. The effect of different O2 additions on these calculation results, as well as on the sputtering rates, is discussed.  相似文献   

10.
A general method for identifying the origin of a particular polyatomic ion is described. Based on a postulated dissociation reaction, measured ion signal ratios (e.g. Ar2+/Ar+) are combined with mass bias corrections and estimates of the density of the neutral product (usually Ar, O or H atoms) to determine a gas kinetic temperature Tgas. The temperature can also be measured by the reduction in pressure when the ICP is sampled (compared to room temperature argon), or by other means. Dissociation energies and spectroscopic constants for the ions are necessary. For the particular instrument used, some of the findings of this study are: (a) ArO+ and ArN+ can be either dissociated (if the plasma potential is high) or created (if the plasma potential is low) by collisions between the sampler and skimmer; (b) the strongly-bound oxide ions O2+ and MO+ for the rare earths are observed at levels consistent with Tgas ∼5300 K in a ‘hot’ plasma, but ClO+ is formed in excess; and (c) the abundances of most other polyatomic ions like H2O+ and ArH+ correspond to higher densities than would be expected in the ICP itself.  相似文献   

11.
Photoexcitation of the argon resonance states in the presence of xenon leads to Xe+2. Kinetic analysis indicates rapid near-resonant energy transfer between argon and xenon atoms. The possibility of an analogous mechanism in other rare gas systems is examined.  相似文献   

12.
The syntheses and structures of four new compounds are described. Two of these compounds are the anhydrous and dihydrate chloride salts of the diamagnetic bis(2,6-diacetylpyridinedioxime)iron(II) cation, [Fe(DAPDH2)2]2+. In this complex cation the DAPDH2 ligand binds to the iron, as expected, through its three nitrogen atoms leaving the four oxime oxygen atoms protonated and uncoordinated. The third compound is (AsPh4)2[Fe2OCl6], a new salt of the well-known oxo-bridged diiron complex, [Fe2OCl6]2?. The synthesis of (AsPh4)2[Fe2OCl6] is a high yield, straightforward, one-step preparation starting with AsPh4Cl and ferrous chloride in methanol. In this synthesis Fe(II) is oxidized to Fe(III) by atmospheric O2. The fourth new compound is the novel and unexpected triiron complex [Fe(DAPDH)2Fe2OCl4]. This complex is derived from [Fe(DAPDH2)2)]2+ and [Fe2OCl6]2? by removing the H+ from each of two adjacent oxime oxygen atoms of the former and one Cl? from each of the Fe(III) ions of the latter. The resulting neutral fragments, Fe(DAPDH)2 and Fe2OCl4, are joined via bonds linking the two oxime oxygen atoms to the two Fe(III) ions giving rise to an unusual eight membered chelate ring containing three iron ions, two nitrogen atoms and three oxygen atoms, one of which is the bridge between the two Fe(III) ions.  相似文献   

13.
Experimental studies have been carried out for nanosecond 266-nm laser-induced photoionization and dissociation of fluoranthene, C16H10 with pulse energies from 0.5 to 20 mJ using a time of flight mass spectrometer. The fragmentation patterns have been characterized and discussed with respect to the number of absorbed photons. They fall into three regimes. The first regime involves low energy processes, where the molecular parent ion promptly dissociates, resulting in the formation of Cm+Hn(m=11−15) by a process where up to two photons are absorbed. The second regime involves intermediate energy, where dissociative processes are activated by up to three-photon absorption and produce a second group of daughter ions: C10+Hn, C9+Hn, and C8+Hn. Finally, there is a third dissociative process, characterized by the absorption of up to four photons, producing C7+Hn, C6+Hn, C5+Hn, C4+Hn, and C3+Hn. Most of the detected ions are of the form Cm+Hn with m < n. Total deprotonation has also been observed. The mechanism proposed involves the dissociation of the parent ion, which then dissociates by different competitive channels. Helium, neon and argon were used as carrier gases (CG). A detailed discussion is presented regarding the use of He as the CG. The laser pulse intensity allows the absorption of up to nine photons, observed through the formation of multiply charged ions of some of the CG atoms.  相似文献   

14.
Polyethylene glycols react with CH3OCH2+ ions from dimethyl ether to form [M + 13]+ products. The [M + 13]+ ions are stabilized by intramolecular interactions involving the internal ether oxygen atoms and the terminal methylene group. Collisionally activated dissociation (CAD), including MSn and deuterium labeling experiments show that fragmentation reactions involving intramolecular cyclization are predominant. Scrambling of hydrogen and deuterium atoms in the ion-molecule reaction products is not indicated. The CAD spectra of the [M + 13]+ ions provide unambiguous assignment of the glycol size.  相似文献   

15.
A computer model is developed for describing argon/nitrogen glow discharges. The species taken into account in the model include electrons, Ar atoms in the ground state and in the 4s metastable levels, N2 molecules in the ground state and in six different electronically excited levels, N atoms, Ar+ ions, N+, N2+, N3+ and N4+ ions. The fast electrons are simulated with a Monte Carlo model, whereas all other species are treated in a fluid model. 74 different chemical reactions are considered in the model. The calculation results include the densities of all the different plasma species, as well as information on their production and loss processes. The effect of different N2 additions, in the range between 0.1 and 10%, is investigated.  相似文献   

16.
The accessibility of lithium cations in microporous vanadosilicate VSH-2Cs of composition Cs2(VO)(Si6O14) ⋅ 3H2O was investigated by Single Crystal X-ray Diffraction, Attenuated Total Reflection Fourier Transformed Infrared Spectroscopy and Density Functional Theory calculations. The topological symmetry of VSH-2Cs is described in space group Cmca. After Li-ion exchange, the structure of VSH-2Li adopted monoclinic symmetry (space group C2/c) with a=17.011(2) Å, b=8.8533(11) Å, c=12.4934(16) Å, β=91.677(4)°, V=1880.7(4) Å3. The strong interactions between Li ions and oxygen-framework atoms drive the main deformation mechanism, which is based on cooperative rotation of SiO4 and VO5 units around their oxygen atoms that behave as hinges. Exchange of Cs+ by Li+ is incomplete and accompanied by the formation of protonated species to counterbalance the electrostatic charge. The incorporation of protons is mediated by the presence of water dimers in the structural channels. H2O molecules in VSH-2Li account not only as “space-fillers” after the removal of large Cs ions but also mediate proton transfer to compensate the negative charge of the host vanadosilicate framework.  相似文献   

17.
The phenomenon of secondary excitation was observed during irradiation of thick targets of boron and gallium nitride with 2 MeV3He+ ions. This effect, though negligible during irradiation with protons or4He+ ions, becomes significant when highly exoergic reactions can occur.  相似文献   

18.
Fourier Transform mid-infrared and Raman spectroscopies were used to investigate the cation/polymer, cation/urea bridge, cation/anion and hydrogen bonding interactions in poly(oxyethylene) (POE)/siloxane di-ureasil networks prepared by the sol–gel route and doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). Materials with compositions 200 ?n ? 5 (where n expresses the molar ratio OCH2CH2/Li+) were studied. The Li+ ions coordinate to the urea carbonyl oxygen atoms over the whole range of salt concentration considered. Bonding to the ether oxygen atoms of the POE chains occurs at n ? 40, although a significant fraction of the POE chains remain non-coordinated. In these high salt content samples, the cations interact with the anions forming contact ion pairs. “Free” ions are probably the main charge carriers at the room temperature conductivity maximum of these ormolytes.  相似文献   

19.
In ab initio calculations, we determined the most probable routes of decomposition of the [CF3Cl]+, [CF2Cl2]+, [CFCl3]+, [CCl4]+ molecular ions of freons and [C3H8]+ ions of hydrocarbons formed by collision of neutral molecules with protons with energies of the order of 10 keV. The calculated potential surface sections are compared on a qualitative level with the probability of various ion fragments in experiments on fragmentation. The role of the charge transfer dynamics between the proton and the molecule is discussed.  相似文献   

20.
Chemical ionization (CI) mass spectrometry with the reagents D2O, CD3OD, and CD3CN (given in order of increasing proton affinity) has been used to generate metastable [M + D]+ ions of a series of mono-, di-, and trifluorophenyl n-propyl ethers and analogs labeled with two deuterium atoms at the β position of the alkyl group. Loss of propene is the main reaction of the [M + D]+ ions, whereas dissociation with formation of propyl carbenium ions is of minor importance. The combined results reveal that the deuteron added in the CI process can be incorporated in the propene molecules as well as in the propyl carbenium ions. The extent to which the added deuteron is exchanged with the hydrogen atoms of the propyl group is markedly dependent on the position of the fluorine atom(s) on the ring and the exothermicity of the initial deuteron transfer. For 3-fluorophenyl n-propyl ether, exchange is not observed if D2O is the CI reagent, and occurs only to a minor extent in the experiments with the CI reagents CD3OD and CD3CN. Similar results are obtained for the 3,5-difluoro- and 2,4,6-trifluorophenyl ethers, whereas significant exchange is observed prior to the dissociations of the [M + D]+ ions of the 4-fluoro- and 2,6-difluorophenyl n-propyl ethers, irrespective of the nature of the CI reagent. These results are discussed in terms of the occurrence of initial deuteron transfer either to the oxygen atom or the aromatic ring followed by formation of an ion/neutral complex of a fluorine-substituted molecule and a secondary propyl carbenium ion. Initial deuteron transfer to the oxygen atom is suggested to yield complexes that can react by exchange between the added deuteron and the hydrogen atoms of the original propyl group prior to dissociation. By contrast, initial deuteron transfer to the ring is suggested to lead to complexes that react further by loss of propene molecules containing only the hydrogen/deuterium atoms of the original propyl entity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号