首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
New oxides with A12M33O90 formula (A = Rb, Cs, Tl) have been synthesized. They crystallize in the trigonal system and can be described by pyrochlore and A2M7O18 phases intergrowth. Cationic ionexchange properties of these compounds are brought out in aqueous solutions and in solid state. So, new hydrated oxides are prepared and their thermal decomposition has been studied. Relations between ionexchange properties and structure are discussed.  相似文献   

2.
Two members of MIII2BP3O12 borophosphates, namely Fe2BP3O12 and In2BP3O12, were synthesized by the solid-state method and characterized by the X-ray single crystal diffraction, the powder diffraction and the electron microscopy. They both crystallize in the hexagonal system, space group P6(3)/m (no. 176) and feature 3D architectures, build up of the M2O9 units and B(PO4)3 groups via sharing the corners; however, they are not isomorphic for the different crystallographically distinct atomic positions. Optical property measurements of both compounds and magnetic susceptibility measurements of Fe2BP3O12 also have been performed. Moreover, in order to gain further insights into the relationship between physical properties and band structure of the MIII2BP3O12 borophosphates, theoretical calculations based on density functional theory (DFT) were performed using the total-energy code CASTEP.  相似文献   

3.
The crystallization of complex phosphates from the melts of Cs2O-P2O5-CaO-MIII2O3 (MIII—Al, Fe, Cr) systems have been investigated at fixed value Cs/P molar ratios equal to 0.7, 1.0 and 1.3 and Са/Р=0.2 and Ca/МIII=1. The fields of crystallization of CsCaP3O9, β-Ca2P2O7, Cs2CaP2O7, Cs3CaFe(P2O7)2, Ca9MIII(PO4)7 (MIII—Fe, Cr), Cs0.63Ca9.63Fe0.37(PO4)7 and CsCa10(PO4)7 were determined. Obtained phosphates were investigated using powder X-ray diffraction and FTIR spectroscopy. Novel whitlockite-related phases CsCa10(PO4)7 and Cs0.63Ca9.63Fe0.37(PO4)7 have been characterized by single crystal X-ray diffraction: space group R3c, a=10.5536(5) and 10.5221(4) Å, с=37.2283(19) and 37.2405(17) Å, respectively.  相似文献   

4.
The systems M2MoO4-Fe2(MoO4)3 (M=Rb, Cs) were shown to be non-quasibinary joins of the systems M2O-Fe2O3-MoO3. New compounds M3FeMo4O15 were revealed along with the known MFe(MoO4)2 and M5Fe(MoO4)4. The unit cell parameters of the new compounds are a=11.6192(2), b=13.6801(3), c=9.7773(2) Å, β=92.964(1)°, space group P21/c, Z=4 (M=Rb) and a=11.5500(9), b=9.9929(7), c=14.513(1) Å, β=90.676(2)°, space group P21/n, Z=4 (M=Cs). In the structures of M3FeMo4O15 (M=Rb, Cs), a half of the FeO6 octahedra share two opposite edges with two MoO6 octahedra linked to other FeO6 octahedra through the bridged MoO4 tetrahedra by means of the common oxygen vertices to form the chains along the a axis. The difference between the structures is caused by diverse mutual arrangements of the adjacent polyhedral chains.  相似文献   

5.
Single crystals of KTP-related phosphates of general formula KMII0.33Nb0.67PO5 (MII—Co, Mn) have been obtained in the pseudo-binary system K2Mo2O7-KMII0.33Nb0.67PO5 by means of the flux technique. The compounds have been studied by single crystal and powder X-ray diffraction, FTIR and UV-VIS spectroscopy. Both complex phosphates belong to the tetragonal system and crystallize in the enantiomorphous polar space groups P41 and P43. The structure contains cis-like helical chains which are connected by corner sharing Nb(MII)O6 octahedra and further linked through the PO4 tetrahedra. The potassium cations are located in the channels running along [001] direction of the anionic framework [MII0.33Nb0.67PO5] and are irregularly coordinated by eight oxygen atoms. Potassium atom site is split into two equally occupied positions with q=0.5.  相似文献   

6.
New oxides with formula A10M29.2O78 (A = Rb, Cs; M = Ta, Nb) have been synthesized. They crystallize in the hexagonal system with cell parameters: a = 7.5 Å, c = 36.4Å. Structural study on powders shows that the framework can be described by hexagonal tungsten bronze and A2M7O18 phases intergrowth. Cationic ion exchange properties of these compounds are shown in aqueous solution. Thus, new hydrated oxides have been prepared.  相似文献   

7.
Fe2P4O12 has been prepared and identified as an isotype of the other MII2P4O12 tetrametaphosphates (MII = Ni, Mg, Cu, Co, Mn, Cd). Its monoclinic unit cell:
a=11.952,b=8.359,c=9.932A?
β=118°76
contains 4 formula units. The space group is C2c. For tetrametaphosphates with MII = Ni, Mg, Cu, Co, and Mn we found a new denser phase induced at 80 kbar and 1000°C. In the case of Fe2P4O12 the unit cell of this new form is
a=9.777,b=8.994,c=4.968A?
β=107°22
with Z = 2 and two possible space groups Cc or 2Cc. This dense phase exists at ordinary pressure for the zinc salt.  相似文献   

8.
Seven oxides ACu3M7O21 have been isolated with A = K, Rb, Tl, Cs for M = Ta and A = K, Rb, Cs for M = Nb. These phases are orthorhombic: a ? 28 Å, b ? 7.50 Å, and c ? 7.55 Å, probable space group Cmmm. Their structure has been established from an X-ray diffraction study and from high-resolution microscopy observations. The structure consists of an intergrowth of single hexagonal tungsten bronze AM3O9 slices and double distorted perovskite Cu3M4O12 slabs (M = Nb, Ta) in which copper has a square coordination. The host lattice of these compounds can be considered as the member “n = 1; n′ = 2” of a series of intergrowths corresponding to the formulation |M3O9|Hn|M2O6|Pn.  相似文献   

9.
A new family of eight germanate phases, A2MGe5O12: A = Rb, Cs; M = Be, Mg, Co, Zn, has been synthesized. They are cubic with a in the range 13.7 to 14.0 Å, Z = 8, and space group I43d. These phases, named the β phases, are isostructural with KBSi2O6 which has a structure related to that of pollucite, CsAlSi2O6. The structure of one, Rb2ZnGe5O12, has been refined to an R value of 0.079 using X-ray powder diffraction data. Several of the new phases are polymorphic. Cs2ZnGe5O12, Cs2CoGe5O12, and Rb2MgGe5O12 form low-temperature, δ polymorphs which have primitive cubic unit cells. Rb2ZnGe5O12 forms a low-temperature, ε polymorph which is probably a tetragonal distortion of the β structure.  相似文献   

10.
The structure of M0.50NbSe2 (M = Ti, V, Cr) phases is reported. A detailed crystal structure analysis has been performed on Cr0.50NbSe2. Large single crystals were grown by chemical transport reaction with bromine as the transport agent. Electrical and magnetic properties have been measured in the 4.2–300°K range. Susceptibilities of both Cr0.50NbSe2 and Ti0.50NbSe2 follow the Curie-Weiss law. At low temperature (T < 53°K) an antiferromagnetic ordering is observed for Cr0.50NbSe2. V0.50NbSe2 exhibits a temperature-independent paramagnetism. Transport properties of M0.50NbSe2 phases are consistent with their metallic behavior and show several transitions at low temperature. The physical properties are discussed along with the reported crystal structure.  相似文献   

11.
Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln3MO7 (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln3MoO7 (Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group P212121, in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group P212121 to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd3MoO7 shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm3MoO7 and the analysis of the magnetic specific heat indicate a “two-step” antiferromagnetic transition due to the ordering of Sm magnetic moments in different crystallographic sites, i.e., with decreasing temperature, the antiferromagnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln3MoO7 were compared with the magnetic properties and structural transitions of Ln3MO7 (M=Nb, Ru, Sb, Ta, Re, Os, or Ir).  相似文献   

12.
A series of red-emitting phosphors Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) have been successfully synthesized at 850 °C by solid state reaction. The excitation spectra of the two phosphors reveal two strong excitation bands at 396 nm and 466 nm, respectively, which match well with the two popular emissions from near-UV and blue light-emitting diode chips. The intensity of the emission from 5D0 to 7F2 of M2(Gd1−xEux)4(MoO4)7 phosphors with the optimal compositions of x=0.85 for Li or x=0.70 for Na is about five times higher than that of Y2O3:Eu3+. The quantum efficiencies of the entitled phosphors excited under 396 nm and 466 nm are also investigated and compared with commercial phosphors Sr2Si5N8:Eu2+ and Y3A5O12:Ce3+. The experimental results indicate that the Eu3+-doped M2Gd4(MoO4)7 (M=Li, Na) phosphors are promising red-emitting phosphors pumped by near-UV and blue light.  相似文献   

13.
Two new isotypic phosphates LiNi2H3(P2O7)2 (1) and LiCo2H3(P2O7)2 (2) have been hydrothermally synthesized and structurally characterized by the single-crystal X-ray diffraction technique. They crystallize in the monoclinic space group C2/c with the lattice: a=10.925(2) Å, b=12.774(3) Å, c=8.8833(18) Å, β=123.20(3)° for 1 and a=10.999(2) Å, b=12.863(3) Å, c=8.9419(18) Å, β=123.00(3)° for 2. The transition metal atoms are octahedrally coordinated, whereas the lithium and phosphorus atoms are all tetrahedrally coordinated. As the lithium-induced derivatives of MH2P2O7 (M=Ni, Co), 1 and 2 possess the same structure with MH2P2O7 in terms of topology, comprising the MO6 zigzag chains and P2O7 as the interchain groups. The magnetisms of 1 and 2 could be interpreted by adopting a quasi-one-dimensional (1D) zigzag chain model as that in their parent compounds: both 1 and 2 have ferromagnetic (FM) NiO6/CoO6 chains; 1 shows a FM cluster glass behavior at low temperatures, which is originated from the possible antiferromagnetic (AFM) next-nearest-neighbour intrachain interactions; 2 shows a AFM ordering at TN=2.6 K and a metamagnetic transition at HC=4.2 kOe at 1.8 K.  相似文献   

14.
15.
Electron paramagnetic resonance (EPR) and magnetic susceptibility measurements on the recently synthesized vanadates M2CrV3O11−x (M=Zn, Mg) have been analyzed. Two absorption lines with g≈2.0 (type I) and g≈1.98 (type II) were recorded in the EPR spectra, which can be attributed to V4+ ions and Cr3+ ion clusters (pairs), respectively. The exchange constant J between Cr3+ ions has been calculated, using both EPR and magnetic susceptibility data. Fitting of the EPR and magnetic susceptibility data has been carried out. The sign of J is a negative one for all samples and indicates antiferromagnetic interactions. Some difference in the J constant value among samples has been obtained. Volumetric titration confirms distinctly the presence of vanadium V4+ ions in the investigated compounds.  相似文献   

16.
The crystal structures of the two oxides Bi46M8O89 (M=P, V) have been solved from single crystals X-ray data at room temperature. Bi46P8O89 crystallizes in the monoclinic symmetry (space group C2/m) with the cell parameters , , and β=112.14(3)°. The symmetry of Bi46V8O89 is also monoclinic but the space group is P21/c with the unit-cell parameters: , , and β=107.27(3)°. Both structures derive from an oxygen deficient fluorite-type structure where the Bi and M cations (M=P, V) are ordered in the framework. The structures are characterised by isolated MO4 tetrahedra (M=P, V) which contradicts the previous results. The difference between the two structures is only due to a different order of the M atoms (M=P, V) in the fluorite-type superstructure. It will be shown that some oxygen sites are partially occupied in both structures which can explain the ion conduction properties of these phases. A structural building principle will be proposed that can explain the large domain of solid solution related to the fluorite-type observed in both systems.  相似文献   

17.
In attempts to synthesize lanthanide(III) nitride iodides with the formula M2NI3 (M=La-Nd), moisture-sensitive single crystals of the first quaternary sodium lanthanide(III) nitride iodides NaM4N2I7 (orthorhombic, Pna21; Z=4; a=1391-1401, b=1086-1094, c=1186-1211 pm) could be obtained. The dominating structural features are chains of trans-edge linked [NM4]9+ tetrahedra, which run parallel to the polar 21-axis [001]. Between the chains, direct bonding via special iodide anions generates cages, in which isolated [NaI6]5- octahedra are embedded. The IR spectrum of NaLa4N2I7 recorded from 100 to 1000 cm-1 shows main bands at υ=337, 373 and 489 cm-1. With decreasing radii of the lanthanide trications these bands, which can be assigned as an influence of the vibrations of the condensed [NM4]9+ tetrahedra, are shifted toward higher frequencies for the NaM4N2I7 series (M=La-Nd), following the lanthanide contraction.  相似文献   

18.
Mn2+-doped M2Si5N8 (M=Ca, Sr, Ba) phosphors have been prepared by a solid-state reaction method at high temperature and their photoluminescence properties were investigated. The Mn2+-activated M2Si5N8 phosphors exhibit narrow emission bands in the wavelength range of 500-700 nm with peak center at about 599, 606 and 567 nm for M=Ca, Sr, Ba, respectively, due to the 4T1(4G)→6A1(6S) transition of Mn2+. The long-wavelength emission of Mn2+ ion in the host of M2Si5N8 is attributed to the effect of a strong crystal-field of Mn2+ in the nitrogen coordination environment. Also it is observed that there exists energy transfer between M2Si5N8 host lattice and activator (Mn2+). The potential applications of these phosphors have been pointed out.  相似文献   

19.
Two novel noncentrosymmetric borates oxides, MBi2B2O7 or MBi2O(BO3)2 (MCa, Sr), have been synthesized by solid-state reactions in air at temperatures in the 600-700 °C range. Their crystal structures have been determined ab initio and refined using powder neutron diffraction data. CaBi2B2O7 crystallizes in the orthorhombic Pna21 space group with a=8.9371(5) Å, b=5.4771(3) Å, c=12.5912(7) Å, Z=4, Rwp=0.118, χ2=2.30. SrBi2B2O7 crystallizes in the hexagonal P63 space group with a=9.1404(4) Å, c=13.0808(6) Å, Z=6, Rwp=0.115, χ2=4.15. Large displacement parameters suggest the presence of disorder in SrBi2B2O7 as also revealed by diffuse 2×a superstructure reflections in electron diffraction patterns. Both structures are built of identical (001) neutral layers of corner-sharing BO3 triangles and MO6 trigonal prisms forming six-membered rings in which Bi2O groups are located. Adjacent layers are stacked in a staggered configuration and connected through weak Bi-O bonds. A moderate efficiency for second harmonic generation (SHG) has been measured for a powder sample of CaBi2B2O7 (deff=2deff(KDP)).  相似文献   

20.
The ir spectra of A3M6Si4O26 (A = Ba, Sr; M = Nb, Ta) and K6M6Si4O26 oxides, whose structure contains linear Si2O7 groups, are discussed with particular emphasis on the peculiar behavior of the antisymmetric stretching frequency of the linear SiOSi bridge. In accord with previous data, this frequency is the highest of the spectrum (near 1200 cm?1), but it is significantly lowered (by about 75 cm?1) when passing from the A3M6Si24O26 to the K6M6Si4O26 compounds. This is readily explained by the peculiar structure of the K6 compounds, in which three (out of the six) K+ cations are located near the bridge oxygen (A2 sites), these sites remaining empty in the A3M6Si4O26 compounds. The resulting KO bonding weakens the SiO bond, thus leading to a lowering of the corresponding bridge frequency. The same type of explanation holds for the presence of a new band at an intermediate frequency (about 1150 cm?1) in phases of intermediate composition K6?2xBaxM6Si4O26, this new band being correlated with a partial occupancy of the A2 sites. This has been applied to, and is a sensitive means of, detecting nonstoichiometry in the A2 sites of other compounds with (M6X4O26) layers (X = Si, Ge) such as Ba6+xNb14Si4O47, K8M14Si4O47, and K10M22X4O68 (M = Nb, Ta).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号