首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compounds in the systems of BaCo1?xMnxO3 (0 ≦ x ≦ 1) and SrCo1?xMnxO3 (0 ≦ x ≦ 1) were prepared at an oxygen pressure of 1400 bars. The former had a two-layer hexagonal structure and that of the latter was cubic perovskite type. From the variation of the unit-cell parameters and of the magnetic properties, it is found that the Co4+ ions change from the low-spin to the high-spin state. In the system of SrCo1?xMnxO3, the change of magnetic property from ferromagnet to antiferromagnet is related to the spin state of Co4+ ions located at the octahedral sites.  相似文献   

2.
The cubic perovskite Sr(Co1?xMnx)O3 has a maximum value of a-axis at x = 0.3 and a change of spin state of Co4+ ion from low to high. To elucidate these properties, the isotropic temperature factor (B) of strontium, cobalt, manganese, and oxygen atoms for x = 0, 0.1, 0.5, 0.8, and 0.1 have been derived from powder X-ray diffraction measurements. The isotropic temperature factor of oxygen for x = 0, 0.1, and 1.0 is small and that for x = 0.5 and 0.8 is large. This fact suggests that the oxygen ion deviates from the center of the CoOMn bond in the solid solutions with x ≧ 0.3. Larger CoO6 octahedra and smaller MnO6 octahedra, which are connected by corner sharing of oxygens of the octahedron, are distributed statistically.  相似文献   

3.
《Solid State Sciences》2001,3(1-2):57-63
The investigation of the magnetic and transport properties of the oxygen deficient perovskites SrFe1−xCoxO3−δ shows that these compounds exhibit both ferromagnetism and metallicity in a wide compositional range (0≤x≤0.70). Negative magnetoresistance is evidenced for the first time in these oxides, in contrast to SrCoO3−δ. These properties are explained by superexchange interactions between cobalt and iron according to the scheme Fe3+OCo4+↔Fe4+OCo3+. This model is strongly supported by 57Fe Mössbauer measurements which show the existence of two sites at room temperature, high spin localized Fe4+ and delocalized Fe3+α sites, whereas magnetic disordering suggesting spin fluctuations is observed at 5 K as soon as cobalt is introduced into the SrFeO3 structure.  相似文献   

4.
Stoichiometric four-layered hexagonal (4H) (Sr1?x?yBaxLay)MnO3 was synthesized using a standard ceramic technique. Rietveld analysis at room temperature indicated that the Mn–O(1) distance increased and the Mn–O(2) distance decreased with the increase in x. The samples were n-type semiconductors and exhibited hopping conductivity in a small-polaron model below 533 K. The Mn3+ ion acted as a donor and the electron transfer became active through the Mn3+–O–Mn4+ path. The samples were antiferromagnetic and the Néel temperature (TN) was constant regardless of y when x was fixed to 0.3, whereas TN shifted to a high temperature when y was fixed to 0.02. The face-sharing Mn3+–O(2)–Mn4+ interaction strengthened as the Mn–O(2) distance decreased, and TN shifted to a high temperature as a result.  相似文献   

5.
The X-ray photoelectron spectroscopy (XPS) of perovskite-type (Ca1−xLax)MnO2.97 (0.1 ≦ x ≦ 0.4) was measured at room temperature. From the absolute values of the binding energy difference (ΔBE) of Ca2pO1s, La3dO1s, and Mn2pO1s, both the chemical bonding of MnO and CaO become more covalent, and that of LaO becomes more ionic with increasing x. The electron transfer of the MnOMn path is dominant, and the electrical properties are strongly influenced by the decrease of the electron transfer of the MnO(Ca,La)OMn path.  相似文献   

6.
Manganese-doped (~200 ppm) single-crystal (La2O3)1?x(CeO2)x samples, with x = 0.20, 0.25, and 0.30 were investigated by ESR before and after annealing at 500°C for 5 hr in a hydrogen atmosphere. Spectra obtained before annealing showed that the valence state of manganese depended upon the amount of CeO2 in the solid solutions. After annealing the valence changes Mn4+ → Mn3+ and Mn3+ → Mn2+ were evident.  相似文献   

7.
The M4+-containing K2NiF4-type phases La0.8Sr1.2Co0.5Fe0.5O4 and La0.8Sr1.2Co0.5Mn0.5O4 have been synthesized by a sol–gel procedure and characterized by X-ray powder diffraction, thermal analysis, neutron powder diffraction and Mössbauer spectroscopy. Oxide ion vacancies are created in these materials via reduction of M4+ to M3+ and of Co3+ to Co2+. The vacancies are confined to the equatorial planes of the K2NiF4-type structure. A partial reduction of Mn3+ to Mn2+ also occurs to achieve the oxygen stoichiometry in La0.8Sr1.2Co0.5Mn0.5O3.6. La0.8Sr1.2Co0.5Fe0.5O3.65 contains Co2+ and Fe3+ ions which interact antiferromagnetically and result in noncollinear magnetic order consistent with the tetragonal symmetry. Competing ferromagnetic and antiferromagnetic interactions in La0.8Sr1.2Co0.5Fe0.5O4, La0.8Sr1.2Co0.5Mn0.5O4 and La0.8Sr1.2Co0.5Mn0.5O3.6 induce spin glass properties in these phases.  相似文献   

8.
The M4+-containing K2NiF4-type phases La0.8Sr1.2Co0.5Fe0.5O4 and La0.8Sr1.2Co0.5Mn0.5O4 have been synthesized by a sol-gel procedure and characterized by X-ray powder diffraction, thermal analysis, neutron powder diffraction and Mössbauer spectroscopy. Oxide ion vacancies are created in these materials via reduction of M4+ to M3+ and of Co3+ to Co2+. The vacancies are confined to the equatorial planes of the K2NiF4-type structure. A partial reduction of Mn3+ to Mn2+ also occurs to achieve the oxygen stoichiometry in La0.8Sr1.2Co0.5Mn0.5O3.6. La0.8Sr1.2Co0.5Fe0.5O3.65 contains Co2+ and Fe3+ ions which interact antiferromagnetically and result in noncollinear magnetic order consistent with the tetragonal symmetry. Competing ferromagnetic and antiferromagnetic interactions in La0.8Sr1.2Co0.5Fe0.5O4, La0.8Sr1.2Co0.5Mn0.5O4 and La0.8Sr1.2Co0.5Mn0.5O3.6 induce spin glass properties in these phases.  相似文献   

9.
The n=2 Ruddlesden-Popper phases LaSr2CoMnO7 and La1.2Sr1.8CoMnO7 have been synthesized by a sol-gel method. The O6-type phases LaSr2CoMnO6 and La1.2Sr1.8CoMnO6 were produced by reduction of the O7 phases under a hydrogen atmosphere. The materials crystallize in the tetragonal I4/mmm space group with no evidence of long-range cation order in the neutron and electron diffraction data. Oxygen vacancies in the reduced materials are located primarily at the common apex of the double perovskite layers giving rise to square pyramidal coordination around cobalt and manganese ions. The oxidation states Co3+/Mn4+ and Co2+/Mn3+ predominate in the as-prepared and reduced materials, respectively. The materials are spin glasses at low temperature and the dominant magnetic interactions change from ferro- to antiferromagnetic following reduction.  相似文献   

10.
The structural and magnetic properties of the Pr1?xMn1+xO3 perovskites were studied. The increase of x (i.e., PrMn < 1) leads to the decrease of the orthorhombic deformation and of the Néel temperature and, simultaneously, to an increase of the ferromagnetic contribution. The latter effect is explained from the suggested distribution of the cations (Pr3+1?xMn2+x)A(Mn3+1?xMn4+x)O2?3 by the double exchange of Mn3+Mn4+ pairs at the B—sublattice.  相似文献   

11.
Oxide perovskites showing oxidative nonstoichiometry (ABO3+x) have been investigated. The structure of LaMn3+0.76Mn4+0.24O3.12 has been investigated by powder neutron diffraction and a composition (La0.94±0.020.06±0.02)(Mn3+0.745Mn4+0.2350.02)O3 with partial elimination of La2O3 and vacancies on both the A and B metal sites determined. A much smaller degree of nonstoichiometry has been found for LaVO3+x(x ? 0.05), and LaCrO3, and EuTiO3 did not show nonstoichiometry under the conditions used. A single phase region from Ba0.8La0.2Ti4+0.8Ti3+0.2O3.0 to Ba0.8La0.2Ti4+O3.1 has been confirmed for lanthanum-doped BaTiO3, but the solubility of La3+ in SrTiO3 is very small; consideration of the ionic radii indicates that the dopant ion of higher oxidation state must be significantly smaller than the normal ion to stabilize a wide nonstoichiometric region with B site vacancies. The extensive nonstoichiometry shown by LaMnO3+x, in contrast to the other lanthanum-transition-metal perovskites LaBO3, may result from the much larger reduction in ionic radius from Mn3+ to Mn4+ than is found for other transition-metal ions.  相似文献   

12.
We studied the effects of Mo substitution on the structural, transport, and magnetic properties of the La0.7Ca0.3Mn1−xMoxO3 (x ≤ 0.1) samples. Powder X-ray diffraction analysis reveals that the samples studied crystallize in the orthorhombic structure with space group Pbnm. Both particle size and morphology change significantly as the Mo content x varies. The metal-insulator transition temperature (TMI) and Curie temperature (TC) decrease monotonically as x increases. Magnetization data reveal that long-range FM ordering persists in all samples and the saturation moment decreases linearly as x increases. The smaller depression rate of dTC/dx observed is mainly ascribed to the increased amount of Mn2+ ions with Mo doping, which opens the FM coupling between Mn2+–O–Mn3+ in the samples.  相似文献   

13.
In this communication, the study on the effect of Ni2+ substitution on structural, magnetic and electrical transport properties were performed in Pr0.75Na0.25Mn1-xNixO3 (x = 0–0.10) ceramics synthesized using conventional solid-state method. X-ray diffraction patterns showed that all samples were present in single phase and crystallized in orthorhombic structure with Pnma space group. Rietveld refinement analysis revealed unit cell volume slight increase with increase Ni concentration, thereby indicating partial substitution of Ni2+ at Mn3+. The presence majority of Ni2+ states in the compound were confirmed by X-ray photoelectron spectrum. Tolerance factor calculation suggested that Ni substitution exerted no strong effect on structural distortion. For un-doped sample (x = 0), AC susceptibility (χ′) against temperature (T) curve showed paramagnetic (PM)–antiferromagnetic(AFM) behavior at Neel temperature (TN) of approximately 170 K. Furthermore, resistivity (ρ) against temperature (T) curve showed an insulating behavior for the whole measured temperature range. The χ′ against T curve of x = 0 sample showed broad peak at approximately 218 K which was attributed to the onset of charge ordered (CO) state. No such broad peak was observed in Ni-substituted samples which indicated the weakening of CO state. Moreover, χ′ measurements exhibited successful inducement of PM–FM transition with Curie temperature (TC), decreasing from 132 K (x = 0.02) to 92 K (x = 0.08). Electrical resistivity measurement on samples (x = 0.02–0.08) displayed inducement of metal–insulator transition, where transition temperature (TMI) decreased and resistivity increased, with x before re-entrant insulating behavior at x = 0.10. Notably, upturn resistivity was observed below 40 K for x = 0.06 and 0.08 samples. The suppression of CO state and inducement of ferromagnetic-metallic (FMM) state beginning from x = 0.02 sample was attributed to the reduced degree of Jahn–Teller distortion and Coulomb interaction among Mn ions, as well as the presence of ferromagnetic superexchange (FM SE) interaction among Ni2+–O–Mn4+ which improved the alignment charge carrier spins and induced the double-exchange (DE) interaction among Mn3+–O–Mn4+. The decrease in TC and TMI with increased x may be due to the enhanced AFM SE interactions of Mn3+–O–Mn3+, Mn4+–O–Mn4+ and Ni2+–O–Ni2+ which decreased the FM SE interaction of Ni2+–O–Mn4+. Consequently, the effective DE interaction was decreased. In addition, the decreased metallic behavior and re-entrant insulating behavior for x = 0.10 sample was due to the strong AFM interaction between Ni2+ ions which consequently contributed to the suppression of FM SE and DE interactions. The observed upturn resistivity below 40 K for x = 0.06 and 0.08 samples was attributed to the Kondo-like effect which resulted from the interaction between itinerant conduction electron spin and localized spin impurity.  相似文献   

14.
Single phase ceramics of cobalt manganese oxide spinels Mn3?xCoxO4 were structurally characterized by neutron powder diffraction over the whole solid solution range. For x < 1.75, ceramics obtained at room temperature by conventional sintering techniques are tetragonal, while for x  1.75 ceramics sintered by Spark Plasma Sintering are of cubic symmetry. The unit cells, metal–metal and metal–oxygen average bonds decrease regularly with increasing cobalt content. Rietveld refinements using neutron data show that cobalt is first preferentially substituted on the tetrahedral site for x < 1, then on the octahedral site for increasing x values. Structural methods (bond valence sum computations and calculations based on Poix's work in oxide spinels) applied to our ceramics using element repartitions and [M–O] distances determined after neutron data refinements allowed us to specify the cation distributions in all phases. Mn2+ and/or Co2+ occupy the tetrahedral site while Mn3+, Co2+, CoIII (cobalt in low-spin state) and Mn4+ occupy the octahedral site. The electronic conduction mechanisms in our highly densified ceramics of pure cobalt and manganese oxide spinels are explained by the hopping of polarons between adjacent Mn3+/Mn4+ and Co2+/CoIII on the octahedral sites.  相似文献   

15.
The new compounds La1?xMxMnO3 (0.05 ? x ? 0.4 for M = K; x = 0.2 for M = Na, Rb) have been prepared. La1?xKxMnO3 (0.05 ? x ? 0.4), LaMnO3.01, LaMnO3.15, La0.8Na0.2MnO3, and La0.8Rb0.2MnO3 have been used as catalysts in the reduction of NO. La0.8K0.2MnO3 has also been used in the catalytic decomposition of NO. The activity of these catalysts is related to the presence of a Mn3+/Mn4+ mixed valence and to the relative ease of forming oxygen vacancies in the solid. The presence of cation vacancies in LaMnO3.15 and the substitution of La3+ by alkali ions in LaMnO3 increases the catalytic activity. The reduction of NO involves both molecular and dissociative adsorption of NO.  相似文献   

16.
In this paper, Y1 ? x La x PO4:Eu3+ (x = 0.5, 0.7, and 0.3) nanophosphors were synthesized by a rather simple method. The products present different morphologies. For Y1 ? x La x PO4:Eu3+, they have similar phase composition of a mixture of monoclinic LaPO4 and tetragonal YPO4. Furthermore, the luminescence behavior of Eu3+ has been investigated in this type of matrices. In Y1 ? x La x PO4:Eu3+, the 5D0-7F1 magnetic dipole transition is dominant, indicating that the Eu3+ site is inversion symmetry. The difference in the Eu-O charge transfer (CT) band with La3+ ion concentration suggests the difference in the ionicity of the Eu-O bond. Among those products, the red to orange intensity ratio (R/O) of 5D0-7F2 to 5D0-7F1 value of Eu3+ is different, furthermore, for La3+ x = 0.3, the R/O value of Eu3+ is the biggest on the contrary, indicating that the inversion symmetry Eu3+ is lowest.  相似文献   

17.
《Solid State Sciences》2007,9(9):869-873
Orthorhombic K2NiF4-type (Ca1+xSm1−x)CoO4 (0.00  x ≤0.15) with space group Bmab has been synthesized by the polymerized complex route. The cell parameters (a and b) decrease, while the cell parameter (c) increases with increasing Co4+ ion content. The global instability index (GII) indicates that the crystal stability of (Ca1+xSm1−x)CoO4 is not influenced by the Co4+ ion content. (Ca1+xSm1−x)CoO4 is a p-type semiconductor and exhibits hopping conductivity in the small-polaron model at low temperatures. The magnetic measurement indicates that (Ca1+xSm1−x)CoO4 shows paramagnetic behavior above 5 K, and that the spin state of both the Co3+ and Co4+ ions is low. The Co4+ ion acts as an acceptor, and the electron transfer becomes active through the Co3+–O–Co4+ path as the Co4+ ions increase.  相似文献   

18.
The influence of the cobalt substitution for manganese ions in the mixed valence perovskites La0.8Na0.2Mn1−xCoxO3 (0?x?0.2) was investigated by X-ray, electric transport and magnetic measurements. The study carried out on sintered polycrystalline samples revealed the rhombohedral () structure and the insulator-metal transition connected with a ferromagnetic arrangement in the whole concentration range. Increasing concentration of cobalt ions leads to a gradual decrease of PM-FM and I-M transition temperatures. An influence of the cobalt ions on the observed behavior is attributed to charge compensation Mn3+→Mn4+ leading to the formation of stable couples Mn4+-Co2+. Therefore the double-exchange interactions Mn3+-O2−-Mn4+ partly vanish and they are replaced by positive superexchange interactions Mn4+-O2−-Co2+, but of a semiconducting character.  相似文献   

19.
The two systems (a) and (b) for different values of x were synthesized. Their electron transport and magnetic properties show a change in behavior above a critical value of x. Unlike the system La1?xSrxCoO3, itinerant electron ferromagnetism is not observed. This is explained on the basis of the absence of an itinerant band of Co4+ whose generation is restricted on account of substitution of Ti4+. Electron transport in these two systems is compared with that of LaCoO3 or La1?xSrxCoO3 and is discussed in view of the presence of different valence states of cobalt and change in crystal field splitting. Spin-state equilibria in these two systems are similar to that in LaCoO3.  相似文献   

20.
The oxyfluoride garnets of formula Y3Fe5?xMxO12?xFx and Gd3Fe5?xMxO12?xFx (M = 3d transition element) result from partial substitution of O2? by F? in Y3Fe5O12 and Gd3Fe5O12 oxides. The cationic charge compensation is obtained by replacing the Fe3+ ions by divalent ions as Mn2+, Co2+, Ni2+, Cu2+ or Zn2+ ions. The site occupied by some of these ions (Mn2+, Ni2+, Zn2+) is determined by magnetic or Mössbauer measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号