首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 103 毫秒
1.
Single crystals of magnesium arsenate have been grown from a PbOAs2O5 eutectic by flux crystallization of a ceramic preparation having an initial composition of 6MgO·As2O5. The crystals are rhombohedral, space group R3m, with hexagonal unit cell parameters a = 6.0278(6) and c = 27.600(3) Å. A three-dimensional structural analysis using automatic diffractometer data has been completed and refined by full-matrix least-squares procedures to a residual R = 0.049 (Rw = 0.059) with a data-parameter ratio of 36 in the final anisotropic refinement. The structure analysis indicated that magnesium arsenate has the composition Mg8.5As3O16 and is isostructural with the previously reported Co8As3O16. The structure is based upon a cubic close-packed oxygen array with charge balance achieved in magnesium arsenate through partial occupancy of a unique magnesium site occurring in an arsenic-substituted MgO-type layer.  相似文献   

2.
Strontium borophosphate phosphate (Sr6BP5O20, SrBP), activated by divalent europium ions is a bluish-green phosphor emitting in a broad band with the emission peak near 480 nm. In this paper, we report the crystal structure of SrBP determined from an analysis of the X-ray diffraction pattern of a prismatic single crystal (size 60 μm×50 μm×40 μm). This crystal was chosen from undoped phosphor powder samples prepared for this purpose by solid-state reaction. SrBP is observed to crystallize in a body-centered tetragonal lattice with the lattice parameters and , the associated space group being (space group 120). Using the structural data from this study, we have also calculated its electronic structure using the augmented spherical wave method and the local density approximation (LDA). We show the ordering of the electronic states by the density of states (DOS) and the partial DOS plots. The LDA gives a direct optical band gap at the Γ point of about 5 eV. The significance of the crystal structure and associated electronic structure is discussed with respect to maintenance of this phosphor in Hg-discharge lamps.  相似文献   

3.
α-SrMnO3 crystallizes in the hexagonal system with unit-cell dimensions a = 5.454(1) Å, c = 9.092(2)Å, space group P63mmc, Z = 4. The structure was solved by the heavy-atom method; of 404 unique reflections measured by counter method, 203 that obeyed the condition |F0| ≥ 3σ (|F0|) were used in the refinement to a conventional R value of 0.043. The structure consists of four close-packed SrO3 layers in an ABAC stacking sequence along the hexagonal c axis. Oxygen octahedra containing Mn4+ are grouped into face-sharing pairs linked by corner sharing within the cubically stacked “A” layer.  相似文献   

4.
The three new ternary phases Na16Zn13.54Sn13.46(5) (I), Na22Zn20Sn19(1) (II), and Na34Zn66Sn38(1) (III) were obtained by direct fusion of the pure elements and characterized by single crystal X-ray diffraction experiments: I, Ibam, Z=8, a=27.401(1), b=16.100(1), c=18.431(1) Å, R1/wR2 (all data)=0.051/0.088; II, Pnma, Z=4, a=16.403(1), b=15.598(1), c=22.655(6) Å, R1/wR2 (all data)=0.038/0.071; III, Rm, Z=3, a=16.956(1), c=36.861(1) Å, R1/wR2 (all data)=0.045/0.092. The structures consist of complex 3D cluster networks made of Zn and Sn atoms with the common motif of Kagomé nets of icosahedra. Additionally to the new heteroatomic {Zn12−xSnx} icosahedra that are omnipresent, triangular units, cages, and pairs of triply fused icosahedra fill the cavities of the Kagomé nets in compounds I, II, and III, respectively. Whereas I crystallizes in a new structure type, II and III have structural analogs in trielide chemistry. All three compounds closely approach the electron numbers expected for valence compounds according to the extended 8-N rule. The concept of achieving an isovalent situation to triel elements by combination of electron poorer and richer elements and the readily mixing of Zn and Sn allow the formation of icosahedral and triangular clusters without the participation of a group 13 element.  相似文献   

5.
From new X-ray powder diffraction data reported in this paper, the structure of the ordered, superstructural phase of Ga2Se3 is found to be different from the structures stated in the literature up to now. The difference relates essentially to the structure distortion involved in the formation of the superstructure. This distortion is clarified in a way which, in general, is suitable for investigations of small distortions of cubic structures. The superstructure cell turns out to be monoclinic, with a = 6.6608(3), b = 11.6516(4), c = 6.6491(3) Å, β = 108.840(5)°, and Z = 4. Furthermore, the coordinates of the Ga and Se positions in this cell are deduced. The space group is shown to be C4s-Cc (No. 9).  相似文献   

6.
A new compound, Na2Zn5(PO4)4, was identified in the system ZnONa2OP2O5 and high-quality crystal was obtained by the melt method. The crystal structure of this compound was solved by direct method from single crystal X-ray diffraction data. The structure was then refined anisotropically using a full-matrix least square refinement on F2 and the refinement converged to R1=0.0233 and wR2=0.0544. This compound crystallizes in the orthorhombic system with space group Pbcn, lattice parameters a=10.381(2) Å, b=8.507(1) Å, c=16.568(3) Å and Z=4. The structure is made up of 3D [Zn5P4O16]n2n covalent framework consisting of [Zn4P4O16]n4n layers. The powder diffraction pattern of Na9Zn21(PO4)17 is explained by simulating a theoretical pattern with NaZnPO4 and Na2Zn5(PO4)4 in the molar ratio of 1:4 and then by Rietveld refinement of experimental pattern. Na2Zn5(PO4)4 melts congruently at 855 °C and its conductivity is 5.63×10−9 S/cm.  相似文献   

7.
The crystal structure of β-BiNbO4 has been determined from three-dimensional X-ray data. The crystals are triclinic with a = 7.611 Å, b = 5.536 Å, c= 7.919 Å, α = 89.88°, β = 77.43°, γ = 87.15°, Z = 4, space group P1. Full-matrix least-squares refinement using isotropic temperature factors has reached R = 0.122 for 642 visually estimated reflections.The structure contains unusual sheets of formula [NbO4] in which the NbO octahedra are joined at four vertices such that the two free ones are cis. NbO distances range from 1.80 to 2.31 Å. The bismuth atoms hold these sheets together and are coordinated to eight oxygens in the form of a very distorted square antiprism.Structurally, β-BiNbO may be considered an antiferroelectric, ferroelastic member of the BaMF4 prototype family.  相似文献   

8.
Ba2V2O7 is triclinic with a = 13.571(3), b = 7.320(2), c = 7.306(2) Å, α = 90.09(1), β = 99.48(1), β = 99.48(1), γ = 87.32(1)°, V = 7.15.1 Å3, Z = 4, and space group P1. The crystal structure was solved by Patterson and Fourier methods and refined by full-matrix least-squares analysis to a Rw of 0.034 (R = 0.034) using 2484 reflections measured on a Syntex P1 automatic four-circle diffractometer. The structure has two unique divanadate groups that are repeated by the b and c lattice translations to form sheets of divanadate groups parallel to (100). These sheets are linked by four unique Ba atoms that lie between these sheets. Ba(1) and Ba(3) are coordinated by eight oxygens arranged in a distorted biaugmented triangular prism and a distorted cubic antiprism, respectively. Ba(2) is coordinated by 10 oxygens arranged in a distorted gyroelongated square dipyramid and Ba(4) is coordinated by nine oxygens arranged in a distorted triaugmented triangular prism. These coordination numbers are substantiated by a bond strength analysis of the structure, and the variation in 〈BaO〉 distances is compatible with the assigned cation and anion coordination numbers. Both divanadate groups are in the eclipsed configuraton with 〈VO(br)〉 bond lengths of 1.821(4) and 1.824(4) Å and VO(br)V angles of 125.6(3) and 123.7(3)°, respectively. Examination of the divanadate groups in a series of structures allows certain generalizations to be made. Longer 〈VO(br)〉 bond lengths are generally associated with smaller VO(br)V angles. When VO(br)V < 140°, the divanadate group is generally in an eclipsed configuration; when VO(br)V > 140°, the divanadate group is generally in a staggered configuration. Nontetrahedral cations with large coordination numbers require more oxygens with which to bond, and hence O(br) is more likely to be three coordinate, with the divanadate group in the eclipsed configuration. In the eclipsed configuration, decrease in VO(br)V promotes bonding between O(br) and nontetrahedral cations, and hence smaller nontetrahedral cations are generally associated with smaller VO(br)V angles.  相似文献   

9.
Nb2Zr6O17 is orthorhombic, space group Ima2, with a = 40.91, b = 4.93, c = 5.27 Å. The asymmetric structural unit contains one octahedron, three sevenfold coordinated ions, and one square antiprism, and its relations to the fluorite and ZrO2 structures are discussed. Variations in compositions can be accounted for by increasing or decreasing the number of sevenfold coordinated ions in the structure.  相似文献   

10.
The present paper reports a comparative study of some thermo-physical properties (thermal conductivity, diffusivity and specific heat per unit volume) of Se90Zn10 and Te90Zn10 alloys. Simultaneous measurements of effective thermal conductivity (λe) and effective thermal diffusivity (χe) of twin pellets of Se90Zn10 and Te90Zn10 alloys using transient plane source (TPS) technique have been made at room temperature. From the measured values of λe and χe, the specific heat per unit volume (Cv) has been calculated. The results indicate that the measured values of these parameters are higher for Te90Zn10 alloy as compared to Se90Zn10 alloy. This is explained in terms of thermal conductivity of chalcogen elements Se and Te.  相似文献   

11.
The crystal structure of Sc2Ru5B4 has been determined by single-crystal X-ray analysis. Sc2Ru5B4 crystallizes in the primitive monoclinic space group P2m with a = 9.983(6), b = 8.486(4), c = 3.0001(3)Å, γ = 90.01(7)°, Z = 2. Deviations from the orthorhombic space group Pbam-D92h are small but significant. Intensity measurements were obtained from a four-circle diffractometer. The structure was solved by Patterson methods and refined by full matrix least-squares calculation. R = ∑|ΔF|∑|F0| = 0.036 for an asymmetric set of 863 independent reflections (|F0|>2σ(F0)). The crystal structure is characterized by two different types of boron atoms: (a) isolated borons B(1) and B(3) in distorted trigonal Ru-prisms with tetrakaidekahedral metal coordination: 6Ru + 3Sc, and (b) boron atoms B(2) and B(4) with a pronounced tendency to form boron pairs (B(2)-B(2) = 1.86 Å, B(4)-B(4) = 1.89 Å); the metal coordination of these boron atoms is 6Ru + 2Sc. Sc atoms have a coordination number of 17 consisting of 10Ru + 2Sc + 5B. The crystal structure of Sc2Ru5B4 is a pentagon layer structure (Ru, B atoms) with a 4.3.4.32-secondary layer of Sc atoms. The structure is furthermore related to the structure types of Ti3Co5B2 and CeCo3B2. From powder photographs Sc2Os5B4 is isotypic. No superconductivity was observed for Sc2(Ru, Os)5B4 down to 1.5 K.  相似文献   

12.
Single crystals of new oxyborates, Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3, were prepared at 1370 °C in air using B2O3 as a flux. They were colorless and transparent with block shapes. X-ray diffraction analysis of the single crystals revealed Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 to be isostructural. The X-ray diffraction reflections were indexed to the orthorhombic Pnma (No. 62) system with a=9.3682(3) Å, b=9.4344(2) Å, c=9.3379(3) Å and Z=4 for Mg5NbO3(BO3)3 and a=9.3702(3) Å, b=9.4415(3) Å, c=9.3301(2) Å and Z=4 for Mg5TaO3(BO3)3. The crystal structures of Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 are novel warwickite-type superstructures having ordered arrangements of Mg and Nb/Ta atoms. Polycrystals of Mg5NbO3(BO3)3 prepared by solid state reaction at 1200 °C in air showed broad blue-to-green emission with a peak wavelength of 470 nm under 270 nm ultraviolet excitation at room temperature.  相似文献   

13.
Single crystals of Ca3Cu3(PO4)4 synthesized hydrothermally at 420°C and 55 kpsi (3.8 kbar) were found to occur in the space group P21a (No. 14) with a = = 17.619(2), b = 4.8995(4), c = 8.917(1)Å, β = 124.08(1)°, and Z = 2. Full-matrix least-squares refinement of the structure using diffractometer data converged to a final anisotropic R = 0.037 (Rw = 0.046). The two calcium atoms are in six- and nine-coordination and the two copper-containing polyhedra (four- and five-coordinated) are similar to those previously found in Cu3(PO4)2.  相似文献   

14.
The crystal structure of Ba2Ti9O20 has been determined by comparison of experimental high-resolution electron micrographs with images simulated using structural models deduced from the micrographs in conjunction with crystallochemical principles. The structure consists of lamellae of hollandite-type structure alternating with BaTiO3-like units, which effectively immobilize the Ba ions. This material should be relatively more leach resistant to attack by aqueous sodium chloride solutions. The structure determination clarifies the observation that this material has unique properties as a microwave resonator, compared with other barium and alkali titanate structures.  相似文献   

15.
The crystal structure of cobalt orthophosphate has been refined by full-matrix least-squares procedures using automatic diffractometer data to a residual R = 0.039 (Rw = 0.058). The space group is P2lc, with a = 5.063(1), b = 8.361(2), c = 8.788(2) Å, and β = 121.00(2)°. Co3(PO4)2 is isotypic with the previously reported γ-Zn3(PO4)2 and Mg3(PO4)2. Cobalt ions occupy two distinct coordination polyhedra, one five and one six-coordinated, in a ratio of two to one. The structure is described in detail.  相似文献   

16.
Cu4(PO4)2O crystallizes in the space group P1 with a = 7.5393(8) Å, b = 8.1021(9) Å, c = 6.2764(8) Å, α = 113.65(1)°, β = 98.42(1)° and γ = 74.19(1)°. The structure was refined by full-matrix least-squares techniques using automatic diffractometer data to R = 0.046 (Rw = 0.056). Four unique copper atoms are in six, five-, and four-coordinated polyhedra which are linked together to form a three-dimensional network. The structure is best described in terms of a cubic close-packed array of oxygen atoms with one-tenth of the possible anion sites vacant.  相似文献   

17.

Abstract  

The intermetallic zinc compounds La3Pd4Zn4 and La3Pt4Zn4 were synthesized by induction melting of the elements in sealed tantalum tubes. The structures were refined from X-ray single-crystal diffractometer data: Gd3Cu4Ge4 type, Immm, a = 1,440.7(5), b = 743.6(2), c = 419.5(2) pm, wR 2 = 0.0511, 353 F 2 for La3Pd4Zn4; and a = 1,439.9(2), b = 748.1(1), c = 415.66(6) pm, wR 2 = 0.0558, 471 F 2 for La3Pt4Zn4 with 23 variables per refinement. The palladium (platinum) and zinc atoms build up a three-dimensional polyanionic [Pd4Zn4] (260–281 pm Pd–Zn) and [Pt4Zn4] (260–279 pm Pt–Zn) network in which the lanthanum atoms fill cavities of CN 14 (6 Pd/Pt + 8 Zn for La1) and CN 12 (6 Pd/Pt + 6 Zn for La2), respectively. The copper position of the Gd3Cu4Ge4 type is occupied by zinc and the two crystallographically independent germanium sites by palladium (platinum), a new coloring pattern for this structure type. Within the [Pd4Zn4] and [Pt4Zn4] the Pd2 and Pt2 atoms form Pd2–Pd2 (291 pm) and Pt2–Pt2 (296 pm) dumbbells. The structures of La3Pd4Zn4 and La3Pt4Zn4 are discussed with respect to the prototype Gd3Cu4Ge4 and the Zintl phase Sr3Li4Sb4. Temperature-dependent magnetic susceptibility measurements indicate diamagnetism for La3Pt4Zn4 and Pauli paramagnetism for La3Pd4Zn4.  相似文献   

18.
Barium-zinc decametaphosphate, Ba2Zn3P10O30, is monoclinic, P2n, with the unit cell parameters a = 21.738(15), b = 5.356(5), c = 10.748(8) Å, β = 99.65(3)° and Z = 2. The crystal structure was solved with a final R value of 0.041. This salt provides the first structural evidence for the existence of a 10-phosphorus ring anion.  相似文献   

19.
The crystal structure of NbS3 was determined from single-crystal diffractometer data obtained with Mo radiation. The compound is triclinic, space group P1, with: a 4.963(2) Å; b = 6.730(2) Å; c = 9.144(4)Å; α = 90°; β = 97.17(1)°; γ = 90°. The structure is closely related to the ZrSe3 structure type; it shows that the compound can be formulated as Nb4+(S2)2?S2?, in agreement with XPS spectra. The main difference with ZrSe3 is that the Nb atoms are shifted from the mirror planes of the surrounding bicapped trigonal prisms of sulfur atoms to form NbNb pairs (NbNb = 3.04 Å); this causes a doubling of the b axis relative to ZrSe3 and a decrease of the symmetry to triclinic.  相似文献   

20.
The crystal structure of Na7Mg4.5(P2O7)4 has been solved by direct methods from the three-dimensional X-ray data. The space group is P1. The crystal structure consists of Mg2+, Na+, and P2O4?7 ions. One magnesium atom at symmetry center (0,0,0) and two sodium atoms at ±(?0.0421, ?0.0596, 0.2230) display occupation factors 0.5 each. A short interatomic distance between these Na+ and Mg2+ ions (1.80 ± 0.01 Å) excludes the occupation of both sites in the same unit cell. The crystal structure of Na7Mg4.5(P2O7)4 consists of unit cells containing Na8Mg4(P2O7)4 or Na6Mg5(P2O7)4 with a statistical occurrence 1:1.Each Mg2+ ion is octahedrally coordinated by six O2? ions at distances 1.979 – 2.270 Å. The coordination polyhedra around the Na+ ions are ill-defined. The bond angles POP in the P2O4?7 groups are 126.6 and 133.6° (±0.3°). The final reliability factor R is 7.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号