首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interpretation of the reduction path of TiNb24O62 is complicated by uncertainty about both the stoichiometric ranges of the possible block structures and the formation of TiNb solid solutions. Reduction forms the Me12O29 phase, probably from the outset, with an initial composition close to Ti2Nb10O29, thereby rapidly depleting the Me25O62 phase of titanium. When log pO2 (atm) has dropped to ?9.62, a phase approximately Ti0.95Nb11.05O29 is in equilibrium with titanium-free Nb25O62 at its lower composition limit (NbO2.471). Nb25O62 is then reduced to Nb47O116 without change in the Me12O29. At ?9.62>log pO2 (atm) > ?10.0, niobium is transferred to the Me12O29 phase and Nb47O116 is consumed. A second univariant equilibrium is set up as Nb47O116 is reduced to Nb22O54. This is consumed in turn, to increase the niobium content of the Me12O29 until, at log pO2 close to ?10.8, monophasic Ti0.48Nb11.52O29 is formed. The (Ti,Nb)O2 solid solution then appears and the final product is Ti0.04Nb0.96O2, with the rutile superstructure cell reported for NbO2.  相似文献   

2.
The crystal structure of Nb22O54 is reported for the first time, and the structure of orthorhombic Nb12O29 is reexamined, resolving previous ambiguities. Single crystal X-ray and electron diffraction were employed. These compounds were found to crystallize in the space groups P2/m (, , , β=102.029(3)°) and Cmcm (, , ), respectively and share a common structural unit, a 4×3 block of corner sharing NbO6 octahedra. Despite different constraints imposed by symmetry these blocks are very similar in both compounds. Within a block, it is found that the niobium atoms are not located in the centers of the oxygen octahedra, but rather are displaced inward toward the center of the block forming an apparent antiferroelectric state. Bond valence sums and bond lengths do not show the presence of charge ordering, suggesting that all 4d electrons are delocalized in these compounds at the temperature studied, T=200 K.  相似文献   

3.
Preparation of new solid solutions containing divalent europium have been tried in the systems Eu2Nb2O7Sr2Nb2O7 and Eu2Ta2O7Sr2Ta2O7. These solid solutions described as Eu2xSr2(1?x)M2O7 (M = Nb and Ta) exist in a pure orthorhombic phase in a limited region of x from 0 to about 0.5. The compounds with compositions close to Eu2M2O7 exist but techniques have not been found to prepare them in pure form.  相似文献   

4.
The Raman spectrum of the compound TiNb2O7 prepared by a liquid mix technique was recorded at room temperature using the 530.98-nm line from a krypton-ion laser as exciter. The bands observed at 998 and 884 cm?1 are assigned to the edge-shared and corner-shared NbO6 octahedra, respectively. The relative intensities of these two bands are consistent with the structure of TiNb2O7 worked out by earlier investigators using X-ray and neutron diffraction. The strong band observed at 647 cm?1 is assigned to the vibration of the TiO6 octahedra. The octahedral coordination for both cations based on the results of the Raman spectrum measurements is in essential agreement with the available structural data for the compound TiNb2O7. The weak band observed at 840 cm?1 is suggestive of the presence of NbO4 tetrahedra in small concentrations in TiNb2O7.  相似文献   

5.
The heat capacity and the enthalpy increments of strontium niobate Sr2Nb2O7 and calcium niobate Ca2Nb2O7 were measured by the relaxation time method (2–300 K), DSC (260–360 K) and drop calorimetry (720–1370 K). Temperature dependencies of the molar heat capacity in the form Cpm = 248.0 + 0.04350T − 3.948 × 106/T2 J K−1 mol−1 for Sr2Nb2O7 and Cpm = 257.2 + 0.03621T − 4.434 × 106/T2 J K−1 mol−1 for Ca2Nb2O7 were derived by the least-square method from the experimental data. The molar entropies at 298.15 K, Sm°(298.15 K) = 238.5 ± 1.3 J K−1 mol−1 for Sr2Nb2O7 and Sm°(298.15 K) = 212.4 ± 1.2 J K−1 mol−1 for Ca2Nb2O7, were evaluated from the low-temperature heat capacity measurements.  相似文献   

6.
The two alkaline earth niobates Sr2Nb2O7 and Ba0.5Sr0.5Nb2O6 have been prepared, their electronic properties measured, and their photoresponses compared. The indirect band gap in Sr2Nb2O7 is 3.86 eV compared with 3.38 eV for Ba0.5Sr0.5Nb2O6. Hence, photoanodes composed of Sr2Nb2O7 respond to much less of the “white” light spectrum than those made from Ba0.5Sr0.5Nb2O6. Nevertheless, their electrical outputs at an anode potential of 0.8 eV with respect to SCE in 0.2 M sodium acetate under “white” xenon arc irradiation of 1.25 W/cm2 are comparable.  相似文献   

7.
X-ray photoelectron spectroscopy (XPS) measurements were carried out on a strontium pyroniobate (Sr2Nb2O7) powder sample, which was synthesized using standard solid-state method. The binding energy (BE) differences between the O 1s and cation core levels, Δ(O-Nb)=BE(O 1s)-BE(Nb 3d5/2) and Δ(O-Sr)=BE(O 1s)-BE(Sr 3d5/2), were used to characterize the valence electron transfer on the formation of the Nb-O and Sr-O bonds. The chemical bonding effects were considered on the basis of our XPS results for Sr2Nb2O7 and earlier published structural and XPS data for other Sr- or Nb-containing oxide compounds. The new data point for Sr2Nb2O7 is consistent with the previously derived relationship for a set of Nb5+-niobates that Δ(O-Nb) increases with increasing mean Nb-O bond distance, L(Nb-O). A new empirical relationship between Δ(O-Sr) and L(Sr-O) was also obtained. Interestingly, the correlation between Δ(O-Sr) and L(Sr-O) was found to differ from that between Δ(O-Nb) and L(Nb-O). Possible cause for the difference is discussed.  相似文献   

8.
The postulated miscibility gap for mixed oxides CuxZn1–xNb2O6 (0.852O6 transforms from its lower symmetric modification to Pbcn symmetry on grinding.  相似文献   

9.
The thermodynamically unexpected reduction of V2O5 in the presence of the mixed oxides AlNbO4, GaNbO4, and TiNb2O7 under nitrogen at 630°C is reported and gives a supplementary example of the kind of interfacial reaction observed in the V2O5TiO2 system. It is shown that this phenomenon comes from the establishment of coherent interfaces between the cleavage planes of two crystals belonging to the same crystallo-chemical family. The reduction enables the system to diminish the elastic stress created by the slight interfacial misfit. A thermodynamic and kinetic explanation, based on structural factors, is given.  相似文献   

10.
层状类钙钛矿结构新铌酸盐KSr2Nb3O10   总被引:3,自引:0,他引:3  
A new niobate compound KSr2Nb3O10 was synthesized for the first time. The chemical compositions, crystal structure, optical property, density and melting point of the new compound were characterized by EPMA, TEM, XRD, DTA and so on. KSr2Nb3O10 crystallizes the orthorhombic system with unit cell parameters a=0.7816(1) nm, b=0.7764(2) nm, c=2.9995(2) nm, V=1.8114(4) nm3, and space group P212121, Z=8. The structure may be described as treble perovskite sheets [Sr2Nb3O10- interleaved with K+. Further, it was found that KSr2Nb3O10 has intercalation phenomenon. Na+, Li+, H+, NH+4 could exchange the interlayer cations K+ of KSr2Nb3O10, and n-hexylamine also could intercalate into the place between the layers of [Sr2Nb3O10-.  相似文献   

11.
The crystal structures of (Ti1?xScx)2O3, x = 0.0038, 0.0109, and 0.0413, and of (Ti0.99Al0.01)2O3, have been determined from X-ray diffraction data collected from single crystals using an automated diffractometer, and have been refined to weighted residuals of 25–34. Cell constants have also been determined for x = 0.0005, 0.0019, and 0.0232. The compounds are rhombohedral, space group R3c, and are isomorphous with α-Al2O3. The hexagonal cell dimensions range from a = 5.1573(2)Å, c = 13.613(1)Å for (Ti0.9995Sc0.0005)2O3 to a = 5.1659(4)Å, c = 13.644(1)Å for (Ti0.9587Sc0.0413)2O3, and a = 5.1526(2)Å, c = 13.609(1)Å for (Ti0.99Al0.01)2O3. Sc and Al substitution cause similar increases in the short near-neighbor metal-metal distance across the shared octahedral face; for Sc doping the increase is from 2.578(1) Å in pure Ti2O3 to 2.597(1) Å in (Ti0.9587Sc0.0413)2O3. By contrast, changes in the metal-metal distance across the shared octahedral edge appear to be governed by ionic size effects. The distance increases from 2.994(1) Å in Ti2O3 to 3.000(1) Å in (Ti0.9587Sc0.0413)2O3 and decreases to 2.991(1) Å in (Ti0.99Al0.01)2O3.  相似文献   

12.
Transparent glasses of various compositions in the system (100−x)Li2B4O7x(SrO-Bi2O3-Nb2O5) (where x=10, 20, 30, 40, 50 and 60, in molar ratio) were fabricated via splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses. X-ray powder diffraction (XRD) and transmission electron microscopic studies confirmed the amorphous nature of the as-quenched and crystallinity in the heat-treated samples. Fluorite phase formation prior to the perovskite SrBi2Nb2O9 phase was analyzed by both the XRD and high-resolution transmission electron microscopy. Dielectric and the optical properties (transmission, optical band gap and Urbach energy) of these samples have been found to be compositional dependent. Refractive index was measured and compared with the values predicted by Wemple-Didomemenico and Gladstone-Dale relations. The glass nanocomposites comprising nanometer-sized crystallites of fluorite phase were found to be nonlinear optic active.  相似文献   

13.
A complete vibrational study of various pyrochlore compounds A2B2O7 shows the role of the different chemical bonds in the structure and how the physico-chemical characteristics of the A and B cations influence these bonds and the rigidity of the two lattices of the structure. Relations between vibrational spectra and structural features are established.  相似文献   

14.
Carbon fibre supported titanium niobium oxide (TiNb2O7) composite electrodes are prepared via a simple solvothermal method and show superior high-rate performance with large capacity and good cycling performance.  相似文献   

15.
The crystal structures of the semiconductor Ti2O3 and the semimetal (Ti0.900V0.100)2O3 were determined from X-ray diffraction data collected from single crystals. The compounds are isostructural with Al2O3 of rhombohedral unit cell dimensions of a = 5.4325(8) Å and α = 56.75(1)° for Ti2O3, and a = 5.4692(8) Å and α = 55.63(1)° for the doped system. The effect of substitution of V+3 is to increase the metal-metal distance across the shared octahedral face from 2.579 Å in Ti2O3 to 2.658 Å in (Ti0.900V0.100)2O3, while decreasing the metal-metal distance across the shared octahedral edge from 2.997 to 2.968 Å. The metal-oxygen distances exhibit only small changes. These structural changes are consistent with the band theory proposed by Van Zandt, Honig, and Goodenough (9) to explain changes in electrical and other properties with increasing vanadium content in (Ti1?xVx)2O3.  相似文献   

16.
The thermal decomposition of CaOsO3 by differential thermal analyses, thermogravimetry and X-ray powder diffraction has been studied. In nitrogen CaOsO3 decomposes at 880 ± 10°C into CaO, osmium metal and oxygen due to the reaction CaOsO3 → CaO + Os + O2. In static air the decomposition occurs in three stages: 2CaOsO3 + 1/2O2 → Ca2Os2O7 (in region 775–808°C), Ca2Os2O7 → Ca2Os2O6,5 + 1/4O2 (at a temperature interval of 850–1000°C) and in the third stage Ca2Os2O6,5 → 2CaO + OsO4 ÷ 1/4 O2 (at 1005 ± 5°C). The first intermediate Ca2Os2O7 is isostructural with orthorhombic Ca2Nb2O7 and its cell parameters are: a0 = 3.745 Å, b0 = 25.1 Å, c0 = 5.492 Å, Z = 4, space group Cmcm or Cmc2. Ca2Os2O7 exhibits metallic conductivity and its electrical resistivity is 4.6 × 10−2 ohm-cm at 296K.  相似文献   

17.
Two compounds of formula La7A3W4O30 (with A=Nb and Ta) were prepared by solid-state reaction at 1450 and 1490 °C. They crystallize in the rhombohedric space group R-3 (No. 148), with the hexagonal parameters: , and , . The structure of the materials was analyzed from X-ray, neutron and electronic diffraction. These oxides are isostructural of the reduced molybdenum compound La7Mo7O30, which are formed of perovskite rod along [111]. An order between (Nb, Ta) and W is observed.  相似文献   

18.
The new titanium borate was synthesized under high-pressure/high-temperature conditions in a Walker-type multianvil apparatus at 7.5 GPa and 1350 °C. Ti5B12O26 is built up exclusively from corner-sharing BO4-tetrahedra and shows a structural relation to the Zintl phase NaTl. Consisting of B12O26-clusters as fundamental building blocks, the structure of Ti5B12O26 can be described via two interpenetrating diamond structures as in NaTl, where each atom corresponds to one B12O26-cluster. The tetragonal titanium borate crystallizes with eight formula units in the space group I41/acd and exhibits lattice parameters of a=1121.1(2) pm and c=2211.5(4) pm. Ti5B12O26 is a mixed-valent compound with TiIII and TiIV cations. The environment of the titanium cations, as well as charge distribution calculations, leads us to the assumption that TiIII and TiIV are located on different crystallographic sites.  相似文献   

19.
The phase equilibria in the V2O3Ti2O3TiO2 system have been determined at 1473°K by the quench method, using both sealed tubes and controlled gaseous buffers. For the latter, CO2H2 mixtures were used to vary the oxygen fugacity between 10?10.50 and 10?16.73 atm. Under these conditions the equilibrium phases are: a sesquioxide solid solution between V2O3 and Ti2O3 with complete solid solubility and an upper stoichiometry limit of (V, Ti)2O3.02; an M3O5 series which has the V3O5 type structure between V2TiO5 and V0.69Ti2.31O5 and the monoclinic pseudobrookite structure between V0.42Ti2.58O5 and Ti3O5; series of Magneli phases, V2Tin?2O2n?1TinO2n?1, n = 4–8; and reduced rutile phases (V, Ti)O2?x, where the lower limit for x is a function of the V(V + Ti) ratio. The extent of the different solid solution areas and the location of the oxygen isobars have been determined.  相似文献   

20.
The silicate compounds Sc2Si2O7 and In2Si2O7 have been converted from thortveitite type to pyrochlore type at 1000°C, 120 kbar, with resulting cell constants of 9.287(3) and 9.413(3) Å, respectively. Invariant reflection intensities in the X-ray powder diffraction patterns allowed precise absorption corrections to be made, and refinement of thermal parameters and of the single structural parameter x gave values of 0.4313(21) and 0.4272(15), respectively. The corresponding six-coordinate SiO distances were 1.761(7) and 1.800(5) Å, and the average eight-coordinate distances for ScO8 and InO8 were 2.267 and 2.275 Å. Values of structure-refined bond lengths for compounds containing six-coordinate silicon are surveyed, and overall weighted average octahedral distances of 1.782(14) Å for SiO and 2.520(18) Å for OO are derived. Pyrochlore phases were not produced from rare-earth disilicate or monosilicate phases subjected to the same reaction conditions as the Sc and In compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号