首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
Experiments on pyrolysis and oxidation of rich mixtures of various aliphatic and simple aromatic hydrocarbons in reflected shock waves have been performed. The mixtures C2H2/Ar, C2H6/Ar, C2H4/Ar, C2H4/O2/Ar, CH4/Ar, CH4/O2/Ar, C3H8/Ar, C3H6/Ar, toluene/Ar, and benzene/Ar were studied. The yield of soot and the temperature of soot particles were determined experimentally by the double-beam absorption emission method. The kinetic model of soot formation during the pyrolysis and oxidation of rich mixtures of aliphatic and aromatic hydrocarbons complemented with a set of nucleations of soot particles from both polyaromatic fragments and unsaturated aliphatic hydrocarbons was suggested. This kinetic model of soot formation was successfully tested. It describes the experimental literature data on the yield of the products of pyrolysis and oxidation of acetylene and diacetylene in a shock tube. The results of our experiments and kinetic calculations of the time, temperature, and concentration dependences are in good agreement for all hydrocarbons under study. All the kinetic parameters of the model remained strictly constant.  相似文献   

2.
Particle-size measurements have been performed above a flat-flame burner using CH4/O2 mixtures. Size estimates were made on the assumption that particle sizes are defined by the self-preserving distribution (s.p.d.). Desymmetry ratios were measured for parallel and perpendicularly polarized argonion-laser radiation at 4880 A. These ratios for the assumed s.p.d. yield mean radii when the Mie theory is applied to spherical particles for a known value of the complex index of refraction (m = 1.57-0.44 i).The measured results are found to be in good agreement with our earlier studies using diffusion-broadening spectroscopy.  相似文献   

3.
The pressure broadening and shift rates of the rubidium D2 absorption line 52S1/2→52P3/2 (780.24 nm) with CH4, C2H6, C3H8, n-C4H10, and He were measured for pressures ≤80 Torr using high-resolution laser spectroscopy. The broadening rates γB for CH4, C2H6, C3H8, n-C4H10, and He are 28.0, 28.1, 30.5, 31.3, and 20.3 (MHz/Torr), respectively. The corresponding shift rates γS are −8.4, −8.8, −9.7, −10.0, and 0.39 (MHz/Torr), respectively. The measured rates of Rb for the hydrocarbon buffer gas series of this study are also compared to the theoretically calculated rates of a purely attractive van der Waals difference potential. Good agreement is found to exist between measured and theoretical rates.  相似文献   

4.
A detailed chemical kinetic model for oxidation of C2H4 in the intermediate temperature range and high pressure has been developed and validated experimentally. New ab initio calculations and RRKM analysis of the important C2H3 + O2 reaction was used to obtain rate coefficients over a wide range of conditions (0.003-100 bar, 200-3000 K). The results indicate that at 60 bar and medium temperatures vinyl peroxide, rather than CH2O and HCO, is the dominant product. The experiments, involving C2H4/O2 mixtures diluted in N2, were carried out in a high pressure flow reactor at 600-900 K and 60 bar, varying the reaction stoichiometry from very lean to fuel-rich conditions. Model predictions are generally satisfactory. The governing reaction mechanisms are outlined based on calculations with the kinetic model. Under the investigated conditions the oxidation pathways for C2H4 are more complex than those prevailing at higher temperatures and lower pressures. The major differences are the importance of the hydroxyethyl (CH2CH2OH) and 2-hydroperoxyethyl (CH2CH2OOH) radicals, formed from addition of OH and HO2 to C2H4, and vinyl peroxide, formed from C2H3 + O2. Hydroxyethyl is oxidized through the peroxide HOCH2CH2OO (lean conditions) or through ethenol (low O2 concentration), while 2-hydroperoxyethyl is converted through oxirane.  相似文献   

5.
Hydrogen (H2) is known to be the fastest fuel to ignite among all practical combustion fuels. In this study, for the first time, longer ignition delay times (IDTs) for the H2 and H2 blended CH4 mixtures were measured compared to those for pure CH4. This work investigates the ignition characteristics of H2, CH4, and 50% CH4/50% H2 mixtures using a rapid compression machine at pressures ranging from 20 to 50 bar and at equivalence ratios (φ) from 0.5 to 2.0 in air in the temperature range 858–1080 K. The experimental IDTs are simulated using a newly updated kinetic mechanism, NUIGMech1.3, and good agreement is observed. At lower temperatures the IDTs of H2, CH4, and the 50% CH4/50% H2 mixtures are similar to one another, and the IDTs of the 50% CH4/50% H2 mixtures are longer than those for pure CH4 at temperatures below 930 K. At temperatures below 890–925 K, depending on the operating pressure and equivalence ratio, the hydrogen mixtures are the slowest to ignite, with IDTs being 2.5 times longer than those recorded for CH4 at a pressure of 40 bar at 890 K for φ = 1.0, and at 875 K for φ = 2.0. At low temperatures alkyl (Ṙ = ĊH3 and Ḣ) radicals add to O2 producing RȮ2 radicals, which then react with HȮ2 radicals forming ROOH (H2O2 and CH3OOH) and O2. For H2, the self-recombination of HȮ2 radicals leads to chain propagation which inhibits reactivity, whereas for CH4, the reaction between RȮ2 (CH3OȮ) and HȮ2 leads to chain branching, increasing reactivity. Furthermore, CH3OOH decomposes more easily to produce CH3Ȯ and ȮH radicals than does H2O2 to produce two ȮH radicals. Thus, mixtures containing higher H2 concentrations are slower to ignite compared to those with higher CH4 concentrations at low temperatures.  相似文献   

6.
We examine the cellular instabilities of laminar non-premixed diffusion flames that arise in a polycrystalline alumina microburner with a channel wall gap of dimension 0.75 mm. Changes in the flame structure are observed as a function of the fuel type (H2, CH4, and C3H8) and diluent. The oxidizer is O2/inert. In contrast to previous observations on laminar diffusion flame instabilities, the current instabilities occur in the direction of flow above the splitter plate, and only occur for the heavier fuel types. They are not observed in a H2–O2 mixture, which will only support a continuous laminar flame inside our burner, regardless of the initial mixture strength and whether or not the flame is in near-quenching conditions. The only exception is when helium is added to the H2–O2 mixture, raising the effective Lewis numbers of both components.  相似文献   

7.
Plasma chemical reactions in CH4/Ar and C2Hm/Ar (m = 2, 4, 6) gas mixtures in a dielectric barrier discharge at medium pressure (300 mbar) have been investigated. From mass spectrometry the production of H2 and formation of larger hydrocarbons such as CnHm with up to n = 12 is inferred. Hydrogen release is most pronounced for CH4 and C2H6 gas mixtures. Fourier Transform InfraRed (FTIR) spectroscopy reveals the formation of substituted alkane (sp3), alkene (sp2), and alkyne (sp) groups from the individual gases which are used in this work. Abundant formation of acetylene occurs from C2H4 and to a lesser extent from C2H6 and CH4 precursor gases. The main reaction pathway of acetylene leads to the formation of large molecules via C4H2 and, eventually, to nano‐size particles. The experimental results are in reasonable agreement with simulations which predict a pronounced electron temperature and gas pressure dependency. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The auto-ignition of toluene/air mixtures was studied in a shock tube at temperatures of 1021-1400 K, pressures of 10-61 atm, and equivalence ratios of Φ = 1.0, 0.5, and 0.25. Ignition times were measured using endwall OH∗ emission and sidewall piezoelectric pressure measurements. The measured pressure time-histories do not show significant pre-ignition energy release, in agreement with the rapid compression machine study of Mittal and Sung [G. Mittal, C.-J. Sung, Combust. Flame 150 (2007) 355-368] and disagreement with the shock tube study of Davidson et al. [D.F. Davidson, B.M. Gauthier, R.K. Hanson, Proc. Combust. Inst. 30 (2005) 1175-1182]. Kinetic modeling predictions from three detailed mechanisms are compared. Sensitivity analysis indicates that the reaction of toluene (C6H5CH3) and the benzyl radical (C6H5CH2) with molecular oxygen are important and examination of the rate coefficients for these reactions suggests that improved rate parameters for the multi-channel C6H5CH2 + O2 reaction may improve model predictions.  相似文献   

9.
MoO3 and Mo samples containing copper were treated with different hydrocarbon/hydrogen gas mixtures. The formation of Mo2C was followed by X-ray photoelectron spectroscopy (XPS). Spectra taken in the Mo 3d, C 1s, O 1s, Cu 2p and Cu KLL regions demonstrated that the treatment with the hydrocarbon/hydrogen gas mixtures led to the formation of Mo2C. From the comparison of the effects of various hydrocarbons on the XP spectra of Mo 3d we can state that the reduction of MoO3 starts at the lowest temperature for C2H6/H2 (600 K) followed by CH4/H2 (700 K) and C4H10/H2 (723 K). Binding energies of Mo 3d5/2 characteristic for Mo2C are measured in the range of 227.7-228.0 eV. These values were attained at 900 K for CH4/H2, at 800 K for C2H6/H2 and at 873 K for C4H10/H2. Addition of copper to MoO3 catalyzed its reduction and promoted the carburization process.  相似文献   

10.
Lean premixed combustion has potential advantages of reducing pollutants and improving fuel economy. In some lean engine concepts, the fuel is directly injected into the combustion chamber resulting in a distribution of lean fuel/air mixtures. In this case, very lean mixtures can burn when supported by hot products from more strongly burning flames. This study examines the downstream interaction of opposed jets of a lean-limit CH4/air mixture vs. a lean H2/air flame. The CH4 mixtures are near or below the lean flammability limit. The flame composition is measured by laser-induced Raman scattering and is compared to numerical simulations with detailed chemistry and molecular transport including the Soret effect. Several sub-limit lean CH4/air flames supported by the products from the lean H2/air flame are studied, and a small amount of CO2 product (around 1% mole fraction) is formed in a “negative flame speed” flame where the weak CH4/air mixture diffuses across the stagnation plane into the hot products from the H2/air flame. Raman scattering measurements of temperature and species concentration are compared to detailed simulations using GRI-3.0, C1, and C2 chemical kinetic mechanisms, with good agreement obtained in the lean-limit or sub-limit flames. Stronger self-propagating CH4/air mixtures result in a much higher concentration of product (around 6% CO2 mole fraction), and the simulation results are sensitive to the specific chemical mechanism. These model-data comparisons for stronger CH4/air flames improve when using either the C2 or the Williams mechanisms.  相似文献   

11.
An experimental investigation of the oxidation of hydrogen diluted by nitrogen in presence of CO2 was performed in a fused silica jet-stirred reactor (JSR) over the temperature range 800-1050 K, from fuel-lean to fuel-rich conditions and at atmospheric pressure. The mean residence time was kept constant in the experiments: 120 ms at 1 atm and 250 ms at 10 atm. The effect of variable initial concentrations of hydrogen on the combustion of methane and methane/carbon dioxide mixtures diluted by nitrogen was also experimentally studied. Concentration profiles for O2, H2, H2O, CO, CO2, CH2O, CH4, C2H6, C2H4, and C2H2 were measured by sonic probe sampling followed by chemical analyses (FT-IR, gas chromatography). A detailed chemical kinetic modeling of the present experiments and of the literature data (flame speed and ignition delays) was performed using a recently proposed kinetic scheme showing good agreement between the data and this modeling, and providing further validation of the kinetic model (128 species and 924 reversible reactions). Sensitivity and reaction paths analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in absence and in presence of additives (CO2 and H2). The kinetic reaction scheme proposed helps understanding the inhibiting effect of CO2 on the oxidation of hydrogen and methane and should be useful for gas turbine modeling.  相似文献   

12.
Shock tube experiments and chemical kinetic modeling were performed to further understand the ignition and oxidation kinetics of various methane-propane fuel blends at gas turbine pressures. Ignition delay times were obtained behind reflected shock waves for fuel mixtures consisting of CH4/C3H8 in ratios ranging from 90/10% to 60/40%. Equivalence ratios varied from lean (? = 0.5), through stoichiometric to rich (? = 3.0) at test pressures from 5.3 to 31.4 atm. These pressures and mixtures, in conjunction with test temperatures as low as 1042 K, cover a critical range of conditions relevant to practical turbines where few, if any, CH4/C3H8 prior data existed. A methane/propane oxidation mechanism was prepared to simulate the experimental results. It was found that the reactions involving CH3O˙, CH32, and ?H3 + O2/HO˙2 chemistry were very important in reproducing the correct kinetic behavior.  相似文献   

13.
Carbon materials with molecular sieve properties (CMS) were prepared by pyrolysis of cotton fabrics by chemical activation procedures. To evaluate the changes in the chemical and textural properties, the impregnants AlCl3, ZnCl2 and H3PO4 were used at 1123 K. The materials were characterized using adsorption of nitrogen and carbon dioxide, TPD, and immersion calorimetry in C6H6. Adsorption kinetics of O2, N2, CO2, CH4, C3H8 and C3H6 were measured in all the prepared materials to determine their behaviour as molecular sieves. The results confirm that the chemical used as impregnant has a significant effect on the resulting CMS separation properties. All materials exhibit microporosity and low oxygen surface group contents; however, the sample impregnated with zinc chloride, with an immersion enthalpy value of 66.4 J g−1 in benzene, exhibits the best performance in the separation of CH4-CO2 and C3H8-C3H6 at 273 K.  相似文献   

14.
This work investigates experimentally and numerically the kinetic effects of water vapor addition on the burning rates of H2, H2/CO mixtures, and C2H4 from 1 atm to 10 atm at flame temperatures between 1600 K and 1800 K. Burning rates were measured using outwardly propagating spherical flames in a nearly constant pressure chamber. Results show good agreement with newly updated kinetic models for H2 flames. However, there is considerable disagreement between simulations and measurements for H2/CO and C2H4 flames at high pressure and high water vapor dilution. Both experiments and simulations show that water vapor addition causes a monotonic decrease in mass burning rate and the inhibitory effect increases with pressure. For hydrogen flames, water vapor addition reduces the critical pressure above which a negative pressure dependence of the burning rate is observed. However, for C2H4 flames, the burning rate always increases with pressure. The results also show that water vapor addition has the same effect as a pressure increase for H2 and H2/CO flames, shifting the reaction zone into a narrower window at higher temperatures. For all fuels, water vapor addition increases OH formation via H2O + O while reducing the overall active radical pool for hydrogen flames. For C2H4, the additional HO2 production pathway through HCO results in a dramatic difference in pressure dependence of the burning rate from that observed for hydrogen. The present work provides important additions to the experimental database for syngas and C0–C2 high pressure kinetic model validations.  相似文献   

15.
We report the first quantitative and calibration-free in situ C2H2 measurement in a flame environment using direct Tunable Diode Laser Absorption Spectroscopy(TDLAS). Utilizing a fiber-coupled Distributed Feedback diode laser near 1535 nm we measured spatially resolved, absolute C2H2 concentration profiles in a laminar non-premixed CH4/air flame supported on a modified Wolfhard-Parker slot burner with N2 purge slots to minimize end flames. We developed a wavelength tuning scheme combining laser temperature and current modulation to record with a single diode laser a mesh of 37 overlapping spectral windows and generate an ∼7 nm (30 cm−1) wide, high-resolution absorption spectrum centered at 1538 nm. Experimental C2H2 spectra in a reference cell showed excellent agreement with simulations using HITRAN2004 data. The enhanced wavelength coverage was needed to establish correct C2H2 line identification and selection in the very congested high temperature flame spectra and led to the P17e line as the only candidate for in situ detection of C2H2 in the flame. We used highly efficient optical disturbance correction algorithms for treating transmission and background emission fluctuations in combination with a multiple Voigt line Levenberg-Marquardt fitting algorithm and Pt/Rh thermocouple measurements to achieve fractional optical resolutions of up to 4 × 10−5 OD (1σ) in the flame (T up to 2000 K). Temperature dependent C2H2 detection limits for the P17e line were 60 to 480 ppm. By translating the burner through the laser beam with a DC motor we obtained spatially resolved, absolute C2H2 concentration profiles along the flame sheet with 0.5 mm spatial resolution as measured with a knife edge technique. The TDLAS-based, transverse C2H2 concentration profiles without any scaling are in excellent agreement with published mass spectrometric C2H2 data for the same flame supported on a similar burner, thus validating our calibration-free TDLAS measurements.  相似文献   

16.
When an aqueous Au(III) solution containing 1-butanol was sonicated under Ar, Au(III) was reduced to Au(0) to form Au particles. This is because various reducing species are formed during sonication, but the reactivity of these species has not yet been evaluated in detail. Therefore, in this study, we analyzed the effects of Au(III) on the rates of the formation of gaseous and water-soluble compounds (CH4, C2H6, C2H4, C2H2, CO, CO2, H2, H2O2, and aldehydes), and the rate of Au(III) reduction as a function of 1-butanol concentration. The following facts were recognized: 1) for Au(III) reduction, the contribution of the radicals formed by the pyrolysis of 1-butanol was higher than that of the secondary radicals formed by the abstraction reactions of 1-butanol with ·OH, 2) ·CH3 and CO acted as reductants, 3) the contribution of ·H to Au(III) reduction was small in the presence of 1-butanol, 4) aldehydes and H2 did not act as reductants, and 5) the types of species that reduced Au(III) changed with 1-butanol concentration.  相似文献   

17.
Two laminar, premixed, fuel-rich flames fueled by anisole-oxygen-argon mixtures with the same cold gas velocity and pressure were investigated by molecular-beam mass spectrometry at two synchrotron sources where tunable vacuum-ultraviolet radiation enables isomer-resolved photoionization. Decomposition of the very weak O–CH3 bond in anisole (C6H5OCH3) by unimolecular decomposition yields the resonantly-stabilized phenoxy radical (C6H5O). This key intermediate species opens reaction routes to five-membered ring species, such as cyclopentadiene (C5H6) and cyclopentadienyl radicals (C5H5). Anisole is often discussed as model compound for lignin to study the phenolic-carbon structure in this natural polymer. Measured temperature profiles and mole fractions of many combustion intermediates give detailed information on the flame structure. A very comprehensive reaction mechanism from the literature which includes a sub-scheme for anisole combustion is used for species modeling. Species with the highest measured mole fractions (on the order of 10?3–10?2) are CH3, CH4, C2H2, C2H4, C2H6, CH2O, C5H5 (cyclopentadienyl radical), C5H6 (cyclopentadiene), C6H6 (benzene), C6H5OH (phenol), and C6H5CHO (benzaldehyde). Some are formed in the first destruction steps of anisole, e.g., phenol and benzaldehyde, and their formation will be discussed and with regard to the modeling results. There are three major routes for the fuel destruction: (1) formation of benzaldehyde (C6H5CHO), (2) formation of phenol (C6H5OH), and (3) unimolecular decomposition of anisole to phenoxy (C6H5O) and CH3 radicals. In the experiment, the phenoxy radical could be measured directly. The phenoxy radical decomposes via a bicyclic structure into the soot precursor C5H5 and CO. Formation of larger oxygenated species was observed in both flames. One of them is guaiacol (2-methoxyphenol), which decomposes into fulvenone. The presented speciation data, which contain more than 60 species mole fraction profiles of each flame, give insights into the combustion kinetics of anisole.  相似文献   

18.
The vibrational properties of adsorbed layers have been studied using inelastic He atom scattering. The substrate was Cu(110) viewed along the [001] and [11̄0] azimuth. The adsorbates included, Kr, Xe, CH4, CD4, C2H6, CO, CO2 and O2 and covered the region of both physisorption and chemisorption. Despite a range of binding energies and mass ratios the vibrational frequencies showed no dependence on the momentum change, i.e. scattering was dispersionless, although intensity changes occurred in the inelastic peaks. There seemed to be no dependence of the adsorbate spectra on coverage below a monolayer. The peaks of CH4 and C2H6 appeared broader than those of Kr and Xe suggesting molecular motions. Further, CH4 and C2H6 gave very similar spectra. Both energy gain and loss events were observed in the inelastic spectrum. For those adsorbates which gave multilayer adsorption (Xe, C2H6) changes in the spectra were observed as the second layer developed. In the latter category also, mixed layers (Xe on C2H6, Xe on CO and C2H6 on Xe) were studied.  相似文献   

19.
Field emission currents of electrons were measured for different planes of tungsten after the interaction of CH4, C2H6, C3H8, and C2H4 at 78°K and 298°K and used to obtain work function and pre-exponential values from Fowler-Nordheim plots. A critical analysis of these data yields a conclusive result on surface potentials only if emitting areas and pre-exponentials are comparable.  相似文献   

20.
Benzophenone ((C6H5)2CO) and decafluorobenzophenone ((C6F5)2CO) were applied to elucidate the photochemical reaction pathway of hydrogen peroxide (H2O2) with dimethylsulfoxide (DMSO). When a solution of benzophenone in DMSO was excited with the 355 nm laser light, three transient species were observed in the time-resolved electron paramagnetic resonance spectra: benzophenone ketyl (C6H5)2COH, methylCH3, and methylsulfinic methylCH2SOCH3 radicals. However, when decafluoro-benzophenone was used with DMSO, only ketyl and methylsulfinic methyl radicals were observed under the same experimental conditions. When the reaction of benzophenone and DMSO was carried out in the presence of H2O2, different time profiles ofCH3 radicals were observed. In the reaction of decafluorobenzophenone-DMSO-H2O2, the time profiles of the radicals were not affected by the presence of H2O2. Thus, these results verify thatCH3 radicals are regenerated in a cyclic pathway, in whichCH3 radicals attack H2O2. The regeneration pathway allows us to observe f-pair polarization throughout the lifetime ofCH3 radicals, which last several microseconds, an order of magnitude longer than theT 1 relaxation time ofCH3 radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号