首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A two consecutive step procedure for the resolution-separation of secondary alcohols employing ethyl tetradecanoate in the presence of lipase allowed the enzymatic kinetic resolution of two target molecules, 1-phenylethanol and 6-methylhept-5-en-2-ol. (S)-1-Phenylethanol was isolated in a yield of 47% with an ee of 94% and (R)-1-phenylethanol in a yield of 51% with an ee of 95%. (S)-6-Methylhept-5-en-2-ol was isolated in a yield 47% and an ee of 87% and (R)-6-methylhept-5-en-2-ol in a yield 49% and an ee of 90%.  相似文献   

2.
Enantioselective acetylation of (±)-4-(1-hydroxyethyl)benzenesulfonamide 6 with ‘Acylase I’ (No. A 2156) from Aspergillus melleus in the presence of vinyl acetate gave (R)-4-(1-acetoxyethyl)benzenesulfonamide 7 (98% ee) and (S)-6 (98% ee). Both (S)-6 and (R)-7 were individually converted to the (S)-hydroxyhexamide 2 (>99% ee) and (R)-hydroxyhexamide 2 (>99% ee), respectively. The absolute configuration of a metabolite (−)-hydroxyhexamide 2 from acetohexamide 1 was found to be S based on unequivocal chemical methods including X-ray analysis.  相似文献   

3.
Two new synthetic methods were established for the efficient synthesis of optically active cyclohexene antisepsis agent, ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate [(R)-1: TAK-242)]. The first method involved recrystallization from methanol of the diastereomeric mixture (6RS,1'R)-7, obtained by esterification of carboxylic acid 3 with (S)-1-(4-nitrophenyl)ethanol [(S)-5)] to give the desired isomer (6R,1'R)-7 with 99% de in 32% yield. Subsequent catalytic hydrogenolysis and esterification gave (R)-1 with >99% ee. The second method employed enantioselective hydrolysis of acetoxymethyl ester 9a (prepared by alkylation of 3 with bromomethyl acetate) with Lipase PS-D to give the eutomeric enantiomer (R)-9a with excellent enantioselectivity (>99% ee) and high yield (48%). The desired (R)-1 was then obtained by transesterification with ethanol in the presence of concentrated sulfuric acid without loss of ee. Of these, the procedure employing enzymatic kinetic resolution using Lipase PS-D is the more efficient and practical preparation of (R)-1.  相似文献   

4.
《Tetrahedron: Asymmetry》2005,16(16):2711-2716
6-Hydroxybuspirone is an active metabolite of the antianxiety drug buspirone. The (R)- and (S)-enantiomers of 6-hydroxybuspirone were prepared using an enzymatic resolution process. l-Amino acid acylase from Aspergillus melleus (Amano Acylase 30000) was used to hydrolyze racemic 6-acetoxybuspirone to (S)-6-hydroxybuspirone in 95% ee after 45% conversion. The remaining (R)-6-acetoxybuspirone with 88% ee was converted to (R)-6-hydroxybuspirone by acid hydrolysis. The ee of both enantiomers could be improved to 99% by crystallization as a metastable polymorph. (S)-6-Hydroxybuspirone was also obtained in 88% ee and 14.5% yield by hydroxylation of buspirone using Streptomyces antibioticus ATCC 14890.  相似文献   

5.
A screening of non-conventional yeast species and several Saccharomyces cerevisiae (baker's yeast) strains overexpressing known carbonyl reductases revealed the S. cerevisiae reductase encoded by YMR226c as highly efficient for the reduction of the diketones 1 and 2 to their corresponding hydroxyketones 3-6 (Scheme 1) in excellent enantiomeric excesses. Bioreduction of 1 using the genetically engineered yeast TMB4100, overexpressing YMR226c, resulted in >99% ee for hydroxyketone (+)-4 and 84-98% ee for (-)-3, depending on the degree of conversion. Baker's yeast reduction of diketone 2 resulted in >98% ee for the hydroxyketones (+)-5 and (+)-6. However, TMB4100 led to significantly higher conversion rates (over 40 fold faster) and also a minor improvement of the enantiomeric excesses (>99%).  相似文献   

6.
We describe the highly selective palladium catalyzed kinetic resolutions of the racemic cyclic allylic carbonates rac-1 a-c and racemic acyclic allylic carbonates rac-3 aa and rac-3 ba through reaction with tert-butylsulfinate, tolylsulfinate, phenylsulfinate anions and 2-pyrimidinethiol by using N,N'-(1R,2R)-1,2-cyclohexanediylbis[2-(diphenylphosphino)-benzamide] (BPA) as ligand. Selectivities are expressed in yields and ee values of recovered substrate and product and in selectivity factors S. The reaction of the cyclohexenyl carbonate 1 a (>/=99 % ee) with 2-pyrimidinethiol in the presence of BPA was shown to exhibit, under the conditions used, an overall pseudo-zero order kinetics in regard to the allylic substrate. Also described are the highly selective palladium catalyzed asymmetric syntheses of the cyclic and acyclic allylic tert-butylsulfones 2 aa, 2 b, 2 c, 2 d and 4 a-c, respectively, and of the cyclic and acyclic allylic 2-pyrimidyl-, 2-pyridyl-, and 4-chlorophenylsulfides 5 aa, 5 b, 5 ab, 6 aa-ac, 6 ba and 6 bb, respectively, from the corresponding racemic carbonates and sulfinate anions and thiols, respectively, in the presence of BPA. Synthesis of the E-configured allylic sulfides 6 aa, 6 ab, 6 ac and 6 bb was accompanied by the formation of minor amounts of the corresponding Z isomers. The analogous synthesis of allylic tert-butylsulfides from allylic carbonates and tert-butylthiol by using BPA could not be achieved. Reaction of the cyclopentenyl esters rac-1 da and rac-1 db with 2-pyrimidinethiol gave the allylic sulfide 5 c having only a low ee value. Similar results were obtained in the case of the reaction of the cyclohexenyl carbonate rac-1 a and of the acyclic carbonates rac-3 aa and rac-3 ba with 2-pyridinethiol and lead to the formation of the sulfides 5 ab, 6 ab, and 6 bb, respectively. The low ee values may be ascribed to the operating of a "memory effect", that is, both enantiomers of the substrate give the substitution product with different enantioselectivities. However, in the reaction of the racemic carbonate rac-1 a as well as of the highly enriched enantiomers 1 a (>/=99 % ee) and ent-1 a (>/=99 % ee) with 2-pyrimidinethiol the ee values of the substrates and the substitution product remained constant until complete conversion. Similar results were obtained in the reaction of the cyclic carbonates rac-1 a, ent-1 a (>/=99 % ee) and ent-1 c (>/=99 % ee) with lithium tert-butylsulfinate. Thus, in the case of rac-1 a and 2-pyrimidinthiol and tert-butylsulfinate anion as nucleophiles the enantioselectivity of the substitution step is, under the conditions used, independent of the chirality of the substrate; this shows that no "memory effect" is operating in this case. Hydrolysis of the carbonates ent-1 a-c, ent-3 aa and ent-3 ba, which were obtained through kinetic resolution, afforded the enantiomerically highly enriched cyclic allylic alcohols 9 a-c (>/=99 % ee) and acyclic allylic alcohols 10 a (>/=99 % ee) and 10 b (99 % ee), respectively.  相似文献   

7.
The enantioselective synthesis of optically active secondary amines via the asymmetric reduction of N-substituted ketimines with various chiral hydride reagents, such as Itsuno's reagent (1), Corey's reagent (2), K glucoride (3), Sharpless' reagent (4), and Mosher's reagent (5) has been investigated. Among the hydride reagents examined, 1 gave the best results in terms of asymmetric induction. Thus, the reduction of N-phenylimine derivatives of aromatic ketones with 1 provided the corresponding amines in 96–98% yields with high optical induction, such as 73 % ee for acetophenone N-phenylimine (6a), 87 % ee for propiophenone N-phenylimine (6b), 88 % ee for bulyrophenone N-phenylimine (6c), and 71 % ee for isobutyrophenone N-phenylimine (6d). In the case of N-alkyl ketimine derivatives, the reduction afforded somewhat lower optical inductions as compared to those of N-phenyl derivatives, giving 46 % ee for acetophenone N-benzylimine (6f), 52 % ee for acetophnone N-n-heptylimine (6g) and 43 % ee for acetophenone N-cyclohexylimine (6h). However, the substitution of a bulky alkyl group on nitrogen of the ketimines increases remarkably the optical induction of product amine, such as 80 % ee for acetophenone N-tert-butylimine (6e). The reduction of N-substituted aliphatic ketimines gave very low optical inductions (7.4 – 24 % ee). The catalytic effects of oxazaborolidines (1a and 2a) in the reduction of ketimines with 1 and 2 were also examined.  相似文献   

8.
Pentasubstituted disiloxanes and silanes of the form HSiMe(2)CH(x)Ph(3-x)(x = 1 or 2) reacted with dimethyl diallylmalonate (1) and other functionalized 1,6-dienes in the presence of a catalytic 1:1 mixture of (N-N)Pd(Me)Cl [N-N = (R)-(+)-4-isopropyl-2-(2-pyridinyl)-2-oxazoline] [(R)-2] and NaBAr(4) [Ar = 3,5-C(6)H(3)(CF(3))(2)] to form the corresponding silylated cyclopentanes in good yield with high diastereoselectivity. The enantioselectivity of cyclization/hydrosilylation of 1 with disiloxanes and functionalized silanes at -20 degrees C increased in the following order: HSiMe(2)OSiMe(3) (75% ee) < HSiMe(2)OSiMe(2)-t-Bu (80% ee) < HSi(i-Pr)(2)OSiMe(3) (86% ee) = HSiMe(2)Bn (86% ee) < HSiMe(2)OSi(i-Pr)(3) (89% ee) < HSiMe(2)OSiPh(2)-t-Bu (91% ee) < HSiMe(2)CHPh(2) (93% ee). Silylated cyclopentanes derived from HSiMe(2)OSiMe(3) were oxidized with excess KF and peracetic acid at room temperature for 48 h to form the corresponding hydroxymethylcyclopentanes in good yield (82-95%). Silylated cyclopentanes derived from HSiMe(2)OSiPh(2)t-Bu were oxidized with a mixture of tetrabutylammonium fluoride and either H(2)O(2) or peracetic acid to form the corresponding alcohols in 48-76% yield. Silylated carbocycles generated from benzhydryldimethylsilane were oxidized with a mixture of TBAF/KHCO(3)/H(2)O(2) in 71-98% yield. Asymmetric cyclization/hydrosilylation/oxidation employing benzhydryldimethylsilane tolerated allylic and terminal olefinic substitution and a range of functional groups.  相似文献   

9.
A library of 19 binol-derived chiral monophosphites that contain a phthalic acid diamide group (PhthalaPhos) has been designed and synthesized in four steps. These new ligands were screened in the rhodium-catalyzed enantioselective hydrogenation of prochiral dehydroamino esters and enamides. Several members of the library showed excellent enantioselectivity with methyl 2-acetamido acrylate (6 ligands gave >97% ee), methyl (Z)-2-acetamido cinnamate (6 ligands gave >94% ee), and N-(1-phenylvinyl)acetamide (9 ligands gave >95% ee), whilst only a few representatives afforded high enantioselectivities for challenging and industrially relevant substrates N-(3,4-dihydronaphthalen-1-yl)-acetamide (96% ee in one case) and methyl (E)-2-(acetamidomethyl)-3-phenylacrylate (99% ee in one case). In most cases, the new ligands were more active and more stereoselective than their structurally related monodentate phosphites (which are devoid of functional groups that are capable of hydrogen-bonding interactions). Control experiments and kinetic studies were carried out that allowed us to demonstrate that hydrogen-bonding interactions involving the diamide group of the PhthalaPhos ligands strongly contribute to their outstanding catalytic properties. Computational studies carried out on a rhodium precatalyst and on a conceivable intermediate in the hydrogenation catalytic cycle shed some light on the role played by hydrogen bonding, which is likely to act in a substrate-orientation effect.  相似文献   

10.
Yamada I  Noyori R 《Organic letters》2000,2(22):3425-3427
A combined system of RuCl[(R, R)-YCH(C(6)H(5))CH(C(6)H(5))NH(2)](eta(6)-arene) (Y = NSO(2)C(6)H(4)-4-CH(3) or O) and t-C(4)H(9)OK catalyzes the asymmetric transfer hydrogenation of various benzaldehyde-1-d derivatives with 2-propanol to yield (R)-benzyl-1-d alcohols in 95-99% ee and with >99% isotopic purity. Reaction of benzaldehydes with a DCO(2)D-triethylamine mixture and the R,R catalyst affords the S deuterated alcohols in 97-99% ee.  相似文献   

11.
Optically active C(2)-symmetric (1S,2S,4S,5S)-bicyclo[2.2.2]octane-2,5-diol ((+)-12; 98% ee) and several selectively protected optically active intermediates useful for synthetic transformations were synthesized via a 1,2-carbonyl transposition route starting from the easily available optically active (1R,4S,6S)-6-hydroxybicyclo[2.2.2]octan-2-one ((-)-2). The synthetic route also allowed the preparation of optically active (1S,4S)-bicyclo[2.2.2]octane-2,5-dione ((+)-14; 98% ee).  相似文献   

12.
Six 4-substituted quinolones 6-8, which bear an ω-iodoalkyl chain, were prepared and subjected to reductive radical cyclisation conditions employing BEt(3)/O(2) as the initiator and either Bu(3)SnH or TMS(3)SiH as hydride source. 4-(4-Iodobutyl)-quinolone (6a) and 4-(3-iodopropylthio)-quinolone (8a) gave the respective 6-endo-cyclisation products in good yields. 4-(3,3-Dimethyl-4-iodobutyl)-quinolone (6b) cyclised in a 5-exo-fashion, while the other substrates delivered only reduction products. The cyclisation reactions could be conducted in the presence of a chiral template (1) with high enantiomeric excess (94-99% ee). The association behaviour of substrate 6a to 1 was studied by NMR titration experiments. In the enantioselective cyclisation of 6b a significant nonlinearity was observed when comparing the product ee with the ee of the template.  相似文献   

13.
Taji H  Watanabe M  Harada N  Naoki H  Ueda Y 《Organic letters》2002,4(16):2699-2702
[structure: see text] Using chiral auxiliaries, 2-methoxy-2-(1-naphthyl)propionic acid (MalphaNP acid) (S)-(+)-1 and its deuterium-labeled enantiomer (R)-(-)-1-d(n)() (n = 3 or 6), we have developed a new diastereomer method for determining enantiomeric excess (% ee) of chiral alcohols by (1)H NMR and/or MS spectrometry, where the kinetic resolution effect is completely excluded. The data of % ee determined by this method agree well with those calculated by weight, the average error being ca. +/-1.08% ee.  相似文献   

14.
Dangel BD  Polt R 《Organic letters》2000,2(19):3003-3006
Me(2)Zn and Et(2)Zn added to aromatic and aliphatic aldehydes in the presence of 3 mol % of 2. (S)-1-Phenylethanol (91% ee) and (S)-1-phenylpropanol (86% ee) were synthesized from benzaldehyde and (S)-1-furan-2-yl-1-propanol (86% ee) from 2-furaldehyde. Nonanal and 3-phenylpropanal provided (S)-3-undecanol (96% ee) and (S)-1-phenyl-3-pentanol (94% ee). A solid-phase variant was effective with reduced ee's (e.g., 86% ee --> 79% ee) for (S)-1-phenylpropanol.  相似文献   

15.
The complex [Ru(Cp)(R,R-BIPHOP-F)(acetone)][SbF(6)], (R,R)-1 a, was used as catalyst for asymmetric Diels-Alder reactions between dienes (cyclopentadiene, methylcyclopentadiene, isoprene, 2,3-dimethylbutadiene) and alpha,beta-unsaturated ketones (methyl vinyl ketone (MVK), ethyl vinyl ketone, divinyl ketone, alpha-bromovinyl methyl ketone and alpha-chlorovinyl methyl ketone). The cycloaddition products were obtained in yields of 50-90 % and with enantioselectivities up to 96 % ee. Ethyl vinyl ketone, divinyl ketone and the halogenated vinyl ketones worked best and their reactions with acyclic dienes consistently provided products with >90 % ee. alpha-Chlorovinyl methyl ketone performed better than alpha-bromovinyl methyl ketone. The reaction also provided a [4.3.1]bicyclic ring system in 95 % ee through an intramolecular cycloaddition reaction. Crystal structure determinations of [Ru(Cp)((S,S)-BIPHOP-F)(mvk)][SbF(6)], (S,S)-1 b, and [Ru(Cp)((R,R)-Me(4)BIPHOP-F)(acrolein)][SbF(6)], (R,R)-2 b, provided the basis for a rationalization of the asymmetric induction.  相似文献   

16.
The syntheses of the optically pure asymmetric hydroborating agents 1 (a, R = Ph; b, R = TMS) in both enantiomeric forms are reported. These reagents are effective for the hydroboration of cis-, trans- and trisubstituted alkenes. More significantly, they exhibit unprecedented levels of selectivity in the asymmetric hydroboration of 1,1-disubstituted alkenes (28-92% ee), a previously unanswered challenge in the nearly 50 year history of this reagent-controlled process. For example, the hydroboration of alpha-methylstyrene with 1a produces the corresponding alcohol 6f in 78% ee (cf., Ipc2BH, 5% ee). Suzuki coupling of the intermediate adducts 5 produces the nonracemic products 7 very effectively (50-84%) without loss of optical purity.  相似文献   

17.
The enantioselective hydrolysis of (+/-)-4-(1-acetoxyethyl)-N-(cyclohexylcarbamoyl)-benzenesulfona mides 3 with lipase Amano P from Pseudomonas sp. in a water-saturated solvent gave (R)-4-(1-hydroxyethyl)-N-(cyclohexylcarbamoyl)benzenesulfonamide 2 (39%, > 99% ee) and unchanged (S)-3 (50%, 62% ee). On the other hand, enantioselective esterification of (+/-)-2 with lipase Amano P in the presence of vinyl acetate provided (R)-3 (41%, > 99% ee) and unchanged (S)-2 (46%, 78% ee).  相似文献   

18.
A 1:1 mixture of (N-N)Pd(Me)Cl ?N-N = (S,S)-4,4'-dibenzyl-4,5,4', 5'-tetrahydro-2,2'-bisoxazoline (S,S-4a) and NaBAr(4) ?Ar = 3, 5-C(6)H(3)(CF(3))(2) (5 mol %) catalyzed the asymmetric cyclization/hydrosilylation of dimethyl diallylmalonate (2) and triethylsilane at -30 degrees C for 48 h to form an 8.1:1 mixture of the silylated carbocycle (S,S)-trans-1, 1-dicarbomethoxy-4-methyl-3-?(triethylsilyl)methylcyclop ent ane (S, S-3) (95% de, 72% ee) and dimethyl 3,4-dimethylcyclopentane-1, 1-dicarboxylate (S,S-6) in 64% combined yield. In comparison, a 1:1 mixture of the palladium pyridine-oxazoline complex (N-N)Pd(Me)Cl ?N-N = (R)-(+)-4-isopropyl-2-(2-pyridinyl)-2-oxazoline (R-5b) and NaBAr(4) (5 mol %) catalyzed the asymmetric cyclization/hydrosilylation of 2 and triethylsilane at -32 degrees C for 24 h to form carbocycle S,S-3 in 82% yield (>95% de, 87% ee) as the exclusive product. Asymmetric diene cyclization catalyzed by complex R-5b was compatible with a range of functional groups and produced carbocycles with up to 91% ee. The procedure also tolerated substitution at a terminal olefinic position and at the allylic position of the diene.  相似文献   

19.
The bacterial strain Sphingomonas sp. HXN-200 was used to catalyze the trans dihydroxylation ofN-substituted 1,2,5,6-tetrahydropyridines 1 and 3-pyrrolines 4 giving the corresponding 3,4-dihydroxypiperidines 3 and 3,4-dihydroxypyrrolidines 6, respectively, with high enantioselectivity and high activity. The trans dihydroxylation was sequentially catalyzed by a monooxygenase and an epoxide hydrolase in the strain with epoxide as intermediate. While both epoxidation and hydrolysis steps contributed to the overall enantioselectivity in trans dihydroxylation of 1, the enantioselectivity in trans dihydroxylation of the symmetric substrate 4 was generated only in the hydrolysis of meso-epoxide 5. The absolute configuration for the bioproducts (+)-3 and (+)-6 was established as (3R,4R) by chemical correlations. Preparative trans dihydroxylation of 1a and 4b with frozen/thawed cells of Sphingomonas sp. HXN-200 afforded the corresponding (+)-(3R,4R)-3,4-dihydroxypiperidine 3a and (+)-(3R,4R)-3,4-dihydroxy pyrrolidine 6b in 96% ee both and in 60% and 80% yield, respectively. These results represent first examples of enantioselective trans dihydroxylation with nonterpene substrates and with bacterial catalyst, thus significantly extending this methodology in practical synthesis of valuable and useful trans diols. Enantioselective hydrolysis of racemic epoxide 2a with Sphingomonas sp. HXN-200 gave 34% of (-)-2a in >99% ee, which is a versatile chiral building block. Further hydrolysis of (-)-2a with the same strain afforded (-)-(3S,4S)-3a in 96% ee and 92% yield. Thus, both enantiomers of 3a can be prepared by biotransformation with Sphingomonas sp. HXN-200.  相似文献   

20.
Simple Grignard procedures provide methallylboranes 1a and 1b in enantiomerically pure form from air-stable precursors in 98% and 95% yields, respectively. These reagents add smoothly to aldehydes and methyl ketones, respectively, providing branched 2 degrees- (6, 69-89%, 94-99% ee) and 3 degrees- (10, 71-87%, 74-96% ee) homoallylic alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号