首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emulsions may be used to speed up reactions of surface-active reagents. In this paper, a theoretical analysis of a simple catalytic reaction (A + BP + B) is performed, where the substrate A in the presence of the catalyst B in an emulsion is converted into the product P, and both the substrate A and the catalyst B are surfactants. It was shown that, because molecules A and B are concentrated in surface layers of the emulsion, these layers act as nanoreactors ensuring a significant acceleration of the catalytic reaction within a certain range of emulsion droplet sizes. The reaction rate depends significantly on the emulsion droplet’s size and there exists an optimal droplet size at which the reaction acceleration is maximal. If the product of the reaction is not surface-active, the reaction rate can remain practically unchanged up to virtually complete substrate conversion. Besides, it was shown that the Michaelis–Menten-type dependence of the reaction rate on the substrate concentration (i.e., the increase in the rate with subsequent saturation) can be observed in the system under consideration.  相似文献   

2.
In emulsion polymerization, complete entry of an initiator-derived, surface-active radical may involve its adsorption onto latex particles/water interfaces and subsequently its propagation with one more monomer molecule therein. However, all publications to date have defined this propagation step as a three-dimensional bulk reaction between a surface-active entry radical and a monomer molecule. This is incorrect conceptually. It is proposed that the rate of the propagation of surface-active entry radicals with monomer at latex particles/water interfaces be expressed as [Formula: see text] . In this equation, A is the interfacial area between water and latex particles; [M](P) and [Formula: see text] are the mean concentrations of monomer in the particle phase and entry radicals in the aqueous phase, respectively; k(I) is the radical propagation constant at the interfaces, and may be estimated via transition state theory. For seeded styrene polymerization by Hawkett et al. (J. Chem. Soc. Faraday Trans. 1 76 (1980) 1323), k(I) approximately approximately 4.2x10(-9)k(p) (mol(-1)dm(4)s(-1)) is estimated. Here k(p) is the propagation rate coefficient in bulk polymerization. This alternative approach should be useful for one to simulate radical entry rate in emulsion polymerization where the propagation step may be rate-determining, such as under monomer-starved conditions.  相似文献   

3.
Catalysis of hydrolytic decomposition of p-nitrophenyl butyrate with the copolymer of N-vinylcaprolactam and N-vinylimidazole in an n-dodecane-water emulsion was studied. The reaction rate in the emulsion is higher than that in a solution containing no emulsified dodecane particles. The data obtained indicate that the reactions involving the surface-active substrate and catalyst can be accelerated by interfaces. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2109–2111, December, 2006.  相似文献   

4.
The effect of CO2 as a green additive on the reaction rate of transesterification of glycerol monostearate with methanol was studied at 333.15 and 343.15 K up to 10.5 MPa. It was demonstrated that addition of CO2 in the reaction system could increase the reaction rate significantly. The phase behavior of the CO2+methanol+ glycerol monostearate ternary system was also determined at 333.15 and 343.15 K. It is shown that addition of CO2 can enhance the miscibility of the reactant. The main reasons for the reaction rate enhancement are that CO2 can enhance the miscibility of the reactants, reduce the viscosity of the reaction mixture, and increase the diffusion coefficients of the reactants.  相似文献   

5.
General conditions of formation and dynamics of adsorption layer of inert surface-active compounds at the polymer/gas interface were investigated. A quantitative model describing the behavior of surface-active additive in polymer film during evaporation into gaseous phase was developed. The correctness of the model was demonstrated on the specific example of studying the behavior of fluoro-organic compounds in polyethylene. The possibility of modifying surface properties of thermoreactive polymers by reactive surface-active compounds was elucidated. It was found that the degree of epoxy polymer surface modification in systems made up of epoxy resin/monoepoxy ester of fatty acid is controlled by the ratio between the additive's rate of diffusion and the rate of its chemical reaction.  相似文献   

6.
A molecular origin of the striking rate increase observed in a reaction on water is studied theoretically. A key aspect of the on-water rate phenomenon is the chemistry between water and reactants that occurs at an oil-water phase boundary. In particular, the structure of water at the oil-water interface of an oil emulsion, in which approximately one in every four interfacial water molecules has a free ("dangling") OH group that protrudes into the organic phase, plays a key role in catalyzing reactions via the formation of hydrogen bonds. Catalysis is expected when these OH's form stronger hydrogen bonds with the transition state than with the reactants. In experiments more than a 5 orders of magnitude enhancement in rate constant was found in a chosen reaction. The structural arrangement at the "oil-water" interface is in contrast to the structure of water molecules around a small hydrophobic solute in homogeneous solution, where the water molecules are tangentially oriented. The latter implies that a breaking of an existing hydrogen-bond network in homogeneous solution is needed in order to permit a catalytic effect of hydrogen bonds, but not for the on-water reaction. Thereby, the reaction in homogeneous aqueous solution is intrinsically slower than the surface reaction, as observed experimentally. The proposed mechanism of rate acceleration is discussed in light of other on-water reactions that showed smaller accelerations in rates. To interpret the results in different media, a method is given for comparing the rate constants of different rate processes, homogeneous, neat and on-water, all of which have different units, by introducing models that reduce them to the same units. The observed deuterium kinetic isotope effect is discussed briefly, and some experiments are suggested that can test the present interpretation and increase our understanding of the on-water catalysis.  相似文献   

7.
A quasi-spontaneous process of mass transfer takes place at the interface of a monomer and water in the presence of surface-active substances soluble in both phases as a result of their diffusion through the interfacial boundary. This process is accompanied by the formation of a microemulsion whose particle size depends on the emulsifier concentration and its molecular structure. While investigating various nonionic surface-active substances as emulsifiers in the emulsion polymerization of vinyl acetate, it was established that polymerization occurs in droplets of the monomer microemulsion in water, which are formed as a result of mass transfer at the interface.  相似文献   

8.
The applicability of the Encounter Theory (ET) (the prototype of the Collision Theory) concepts for widely occurring diffusion assisted irreversible bulk reaction A+B→C (for example, radical reaction) in dilute solutions with arbitrary ratio of initial concentrations of reactants has been treated theoretically with modern many-particle method for the derivation of non-Markovian binary kinetic equations. The method shows that, just as in the reaction A+A→C considered earlier, the agreement with the Encounter Theory is observed when the familiar Integral Encounter Theory is used which is just a step in the derivation of kinetic equations in the framework of the method employed. It allows for two-particle correlations only, and fails to consider the correlation of reactant simultaneously with a partner and with a reactant in the bulk. However, the next step leading to the Modified Encounter Theory under reduction of equations to a regular form both extends the time applicability interval of ET homogeneous rate equation (as for reactions proceeding in excess of one of the reactants), and yields the inhomogeneous equation of the Generalized Encounter Theory (GET) that reveals macroscopic correlations induced by the encounters in a reservoir of free walks in full agreement with physical considerations. This means that the encounters of reactants in solution are correlated at rather large time interval of the reaction course. However, unlike the reaction A+A→C of identical reactants, the reaction A+B→C accumulation of the above macroscopic correlations (even with the initial concentrations of reactants being equal) proceeds much slower. Another distinction is that for the reaction A+A→C the long-term behavior of ET and GET kinetics is the same, while in the reaction A+B→C these kinetics behave differently. It is of interest that just taking account of the above macroscopic correlations in the reaction A+B→C (in GET) results in the universal character of the long-term behavior of the kinetics for the case of equal initial concentrations of reactants and that where one of the reactants is in excess. This is more natural from the point of view of the reaction course on the encounters of reactants in solutions.  相似文献   

9.
The aim of this study was to investigate the effects of acrylamide on emulsification of the pseudoternary Span 80-Tween 85/isopar M/water system at 40 °C. It was revealed that acrylamide could act as a surface-active agent to decrease the isopar M/water interfacial tension, and as a hydrotrope to increase the aqueous solubility of Tween 85, and further remarkably influence the emulsification of the investigated pseudoternary Span 80-Tween 85/isopar M/water system. The surface-active role of acrylamide could reduce the minimal weight fraction of the mixture of Span 80 and Tween 85 in pseudoternary systems (XST) to form stable water-in-oil (W/O) emulsions when the weight fraction of acrylamide in the aqueous domain (XAM) is below 0.1; while its hydrotropic role at high XAM levels (>0.1) could drive more Tween 85 molecules to transfer into aqueous phase and slightly improved the minimal XST to form stable W/O emulsions, as compared to that of XAM at 0.1. Moreover, under a given XST, the mean diameter of the droplet size distribution of the W/O emulsion remarkably decreased with the increase in XAM; while the smaller droplets in the W/O emulsion systems at higher level of XAM still coalesced rapidly when the compositions of the emulsion was slightly above the visually determined boundary between non-emulsion and stable emulsion regions.  相似文献   

10.
The new fluorinated acrylate emulsion was synthesized by using the intermediate perfluorous nonene and 2-hydroxyethyl methacrylate as the staring reactants via semi-continuous seeded emulsion polymerization. The structures, glass transition temperature, thermal property and water repellency of the fluorinated acrylate emulsion were characterized with FTIR, differential scanning calorimetry, thermal analysis, and contact angle meter. Influences of many factors such as the theoretical solid content, the temperature of the emulsion polymerization on the stability of the emulsion polymerization, the added amount of emulsifiers and the added amount of the initiator were studied. Results show that the stability of the emulsion polymerization is fairly good when the theoretical solid content is below 30% and the reaction temperature is 80°C and the added amount of emulsifiers and the initiator are 6.0–8.0% and 2.0% respectively. In comparison with the acylate emulsion, the thermal stability of the fluorinated acrylate emulsion is decreased but the water repellency of the fluorinated acrylate emulsion is greatly increased.  相似文献   

11.
It is well known that the amount of surfactant must be carefully controlled during starve-fed emulsion polymerization processes. Too little surfactant leads to emulsion instability and coagulation, while too much surfactant leads to secondary particle formation. Although these relationships are qualitatively understood in the art, there is little quantitative basis to guide the synthetic chemist, especially in multistep starve-fed emulsion polymerization processes to make larger supermicron particles. We have developed a method, which will be described in a companion article, to control the surfactant level by monitoring the surface tension during polymerization. In order to quantitatively predict how much surfactant to add at any given time, one needs to know in advance the adsorption characteristics of the soap. Further complicating the matter is the formation of “in situ” or oligomeric surfactant during polymerization with aqueous initiators such as ammonium persulfate. This work demonstrates how to prepare surface-active oligomers and how to make latex particles using them as surfactant. First, we established the mass balance for the initiator-derived sulfate groups in seed latexes by conductometric, potentiometric, and iodometric titrations. Based on the characterization of seed latexes, a method for determining the effective sulfate concentration has been developed. When surface-active oligomers were used as the only surfactant, we obtained a series of monodisperse, supermicron copolymer latex particles with diameters up to 3.22 μm. This is a similar result to that obtained with a commercially made anionic surfactant. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
Recent developments in nanotechnology have facilitated the use of surface-active colloidal particles with tailor-made anisotropic properties. These surface-active agents have introduced unprecedented emulsion systems that exhibit qualitatively different self-assembled/organized structures and material properties from those of emulsions with conventional surfactants or isotropic colloidal particles. The author highlights the recent experimental works that elucidate the fundamental roles of anisotropy in the self-assembly/organization in emulsions, while focusing predominantly on amphiphilicity and morphological anisotropy in a particle. The author also introduces recent works that harness these fundamental properties of anisotropy for realizing the characteristic emulsion state and its functionality, together with a work with large particles beyond colloidal scale.  相似文献   

13.
研究了表面活性单体「磺化-十二醇-烯丙基甘油-丁二酸酯钠盐(ZC-L)」的用量对MMA/BA/ZC-L乳液聚合速率和粒径的影响,用Corltir LS230型激光粒径分析仪测定聚合过程中乳液的粒径和粒径分布变化,并与MMA/BA无皂乳液聚合及十二烷基苯磺酸钠存在下的MMA/BA乳液聚合作了比较。「ZC-L」〈CMC时,成核机理为均相成核机理,乳胶粒需依靠粒子间的凝聚来提高表面电荷密度而稳定;「ZC  相似文献   

14.
研究了表面活性单体[磺化-十二醇-烯丙基甘油-丁二酸酯钠盐(ZC-L)]的用量对MMA/BA/ZC-L乳液聚合速率和粒径的影响,用CoulterLS230型激光粒径分析仪测定聚合过程中乳液的粒径和粒径分布变化,并与MMA/BA无皂乳液聚合及十二烷基苯磺酸钠存在下的MMA/BA乳液聚合作了比较.[ZC-L]CMC时,成核机理包括均相成核和胶束成核机理,生成的粒子因吸收体系中的表面活性单体而稳定存在.  相似文献   

15.
The biphasic autoxidation of tetralin was carried out using various Co, Ni and Mn complexes as catalysts. Cobalt–N,N′-dimethylethylenediamine complex, which is amphiphilic and surface-active, was found to be most effective; it could be easily recovered in a compact emulsion layer after the reaction and could be reused with no apparent loss of activity. The biphasic reaction differs from the homogeneous counterpart in that (1) little hydroperoxide product is formed, (2) there is lesser sensitivity to product inhibition and a greater degree of conversion and (3) there is an easier catalyst recovery and substrate recycle.  相似文献   

16.
本文以鱼明胶为分散介质,采用双注法制备AgBr/I纳米粒子乳剂,控制银盐与卤溶液的注入速率(R),以TEM观测了粒子的生长,据此探讨了该乳剂中AgBr/I纳米粒子平均粒径(d)及分布(±σ)与反应条件的关系.发现在R为1.3 mmol/min-8 mmol/min范围内,随R增大,d减小,R-d间呈良好的线性关系.除个别外,±σ值变化不明显.对于该纳米粒子乳剂采用二氧化硫脲进行化学敏化,结果表明:适当增加二氧化硫脲的加入量和延长敏化时间,均可有效提高乳剂的感光度,并有助于改善其低照度互易律失效,此外还揭示了曝光光源色温对该乳剂感光性能的影响.  相似文献   

17.
偏氟乙烯/六氟丙烯乳液共聚反应动力学   总被引:1,自引:0,他引:1  
对气相含氟单体偏氟乙烯(VDF)/六氟丙烯(HFP)的乳液共聚反应动力学机理进行了研究.结果表明:在80℃下,上述两种单体共聚反应速率r对乳化剂浓度(S)、引发剂浓度(I)和反应总压力(p)分别呈0.05级、0.31级和1.59级反应,由此推导得乳液共聚的反应速率表达式为:r一1.11×10-4S0.05I0.31P1.59,其中速率常数k=1.11×10-4g-0.37L0.37(MPa)-0.59min-1.由上述动力学方程计算得到的乳液共聚反应速率与实验结果一致.同时对两种单体的竞聚率做了初步讨论.  相似文献   

18.
19.
We review the flow of emulsion drops, focusing on recent work involving complex interfaces, which may include the presence of surfactants, particles, surface-active polymers, or solid-like membrane layers. En route, important phenomena in multiphase flow associated with emulsion rheology are considered, including drop coalescence and breakup, surfactant transport, or the mechanics of composite interfaces.  相似文献   

20.
The creaming and rheology of oil-in-water emulsions (30 vol% n-tetradecane, pH 6.8) stabilized by a mixture of commercial sodium caseinate and the non-ionic emulsifier polyoxyethylene sorbitan monolaurate (Tween 20) has been investigated at 21 degrees C. The presence of sufficient Tween 20 to displace most of the protein from the emulsion droplet surface leads to greatly enhanced emulsion creaming (and strongly non-Newtonian rheology) which is indicative of depletion flocculation by nonadsorbed surface-active material (protein and emulsifier). In emulsions containing a constant amount of surface-active material, the replacement of a very small fraction of Tween 20 by caseinate in a stable pure Tween 20 emulsion leads to enhanced creaming for a small fraction of the droplets, and this fraction increases with increasing replacement of emulsifier by protein. This behavior is probably due to depletion flocculation, although an alternative bridging mechanism is also a possibility. The overall stability of these sets of emulsions can be represented in terms of a global stability diagram containing regions of bridging flocculation and coalescence (low content of surface-active material), stability (intermediate content), and depletion flocculation (high content). Copyright 1999 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号