首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,4,6-trichloroanisole (TCA) is a microbial metabolite formed from chlorophenols through the activity of several natural fungal strains present on the cork oak bark. TCA is the primary compound responsible for the mousty/mould off-odour known as “cork taint” present in cork stoppers, wine, water and alcoholic beverages. Chromatographic and electrochemical methods are currently used for the determination of TCA, however its detection at low concentrations remains a technical challenge. The aim of this study was the development of a rapid novel biosensor system based on the Bioelectric Recognition Assay (BERA). The sensor measured the electric response of cultured membrane-engineered fibroblast cells suspended in an alginate gel matrix due to the change of their membrane potential in the presence of the analyte. Membrane-engineered cells were prepared by osmotic insertion of 0.5 μg/l of specific TCA antibodies into the membrane of the cells. The BERA-based sensor was able to detect TCA in a few minutes (3-5 min) at extremely low concentrations (10−1 ppt), thus demonstrating higher sensitivity than the human sensory threshold. In addition, the assay was quite selective against other haloanisoles and halophenols structurally related to or co-occurring with TCA. Finally the sensor was tested against real white wine samples from cork soaks. At this real test, the BERA sensor was able to detect TCA from cork soaks rapidly (3-5 min) at very low concentrations (1.02-12 ng/l), covering the whole range for the detection threshold for wines (1.4-10 ng/l). Therefore, this novel biosensor offers new perspectives for ultra-rapid, ultra-sensitive and low-cost monitoring of TCA presence in cork and wine and possibly also other food commodities.  相似文献   

2.
This paper proposes a multiple headspace solid-phase microextraction (MHS-SPME) method coupled to gas chromatography-tandem mass spectrometry detection (GC/MS/MS) for the simultaneous determination of 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, pentachloroanisole, 2,4,6-tribromoanisole, 4-ethylphenol, 4-ethylguaiacol, 4-vinylphenol and 4-vinylguaiacol in wines. These compounds are involved in the presence of "cork taint" and Brett character in wines. The MHS-SPME method is a modification of SPME developed for quantitative analysis that avoids possible matrix effects based on an exhaustive analyte extraction from the sample. After demonstrating the existence of matrix effect in the analysis of the target compounds by HS-SPME with a divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibre, the MHS-SPME method was developed and validated. The proposed method showed satisfactory linearity, precision and detection limits, all below the odour detection thresholds of the compounds in wine matrices. Good recoveries were observed for all compounds, always above 90%, and the repeatability obtained was considered acceptable, ranging between 2 and 11%. After checking the applicability of the method by comparing the results recorded with those obtained with the standard addition method, the method was applied successfully to the analysis of wine samples. To our knowledge, this is the first time that MHS-SPME combined with GC/MS/MS has been applied to simultaneously determine haloanisoles and volatile phenols in wine.  相似文献   

3.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was evaluated for the simultaneous determination of five chlorophenols and seven haloanisoles in wines and cork stoppers. Parameters, such as the nature and volume of the extracting and disperser solvents, extraction time, salt addition, centrifugation time and sample volume or mass, affecting the DLLME were carefully optimized to extract and preconcentrate chlorophenols, in the form of their acetylated derivatives, and haloanisoles. In this extraction method, 1mL of acetone (disperser solvent) containing 30μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5mL of sample solution containing 200μL of acetic anhydride (derivatizing reagent) and 0.5mL of phosphate buffer solution, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation, and a volume of 4μL of the sedimented phase was analyzed by GC-MS. The wine samples were directly used for the DLLME extraction (red wines required a 1:1 dilution with water). For cork samples, the target analytes were first extracted with pentane, the solvent was evaporated and the residue reconstituted with acetone before DLLME. The use of an internal standard (2,4-dibromoanisole) notably improved the repeatability of the procedure. Under the optimized conditions, detection limits ranged from 0.004 to 0.108ngmL(-1) in wine samples (24-220pgg(-1) in corks), depending on the compound and the sample analyzed. The enrichment factors for haloanisoles were in the 380-700-fold range.  相似文献   

4.
Spectrophotometric determination of total procyanidins in wine vinegars   总被引:1,自引:0,他引:1  
A widely-used method for the spectrophotometric determination of procyanidins in wines has been adapted to wine vinegar samples. Reagent concentrations have been established and the analytical method tested for possible matrix effects. The recovery of catechin was approximately 98% and the limit of reliable measurement was 0.48 mg l(-1). The within-day and between-day precisions were evaluated and according to the two-tailed F-test the precisions were statistically equivalent. Application to wine vinegars obtained by traditional and quick acetification methods showed differences in concentration between the two groups.  相似文献   

5.
A method based on solvent extraction and purge-and-trap capillary gas chromatography with atomic emission detection (PT-GC-AED) for the determination of 2,4,6-trichloroanisole (TCA) in wines and cork stoppers was optimized and evaluated. TCA was previously extracted from the samples in pentane and the preconcentrated extract was reconstituted in water before being injected into the chromatograph by means of the PT system. Element-specific detection and quantification was carried out by monitoring the chlorine (479 nm) emission line. Two different calibration graphs were used to quantify TCA in the cork or the wine samples, owing to the interference produced by the ethanol content in the wines. Detection limits of 25 pg g(-1) and 5 ng l(-1) were obtained for corks and wines, respectively. The method provided recoveries from spiked samples ranging from 88.5 to 102.3%, confirming the reliability of the procedure and its suitability for routine monitoring.  相似文献   

6.
Solid-phase microextraction by immersion (IS-SPME) and headspace mode (HS-SPME), together with stir bar sorptive extraction (SBSE), have been assayed in combination with gas chromatography-ion trap tandem mass spectrometry (MS/MS) for analysing 2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, 2,4,6-tribromophenol, 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole and 2,4,6-tribromoanisole in different liquid matrices. Once, the optimization of MS/MS fragmentation analysis was carried out, sample enrichment was performed using the three mentioned extraction methods, and comparison through the determination of linearity, and LOD and LOQs were carried out. SBSE and IS-SPME methods described enabled us to determine the target compounds at ng/l levels, concentrations lower than their olfactory threshold, which is not the case of HS-SPME. SBSE showed a higher concentration capability than both SPME techniques, especially when compared to the HS-SPME mode. Thus, SBSE should be the definitive technique to analyse halophenols and haloanisoles in aqueous matrices. SBSE has been also applied to nine aqueous matrices as different as tap water, wines or commercial lemon juice extract.  相似文献   

7.
A gas chromatography-high-resolution mass spectrometry (GC-HRMS) method using solid-phase microextraction (SPME) for the determination of 2,4,6-trichloroanisole (TCA) and 2,4,6-tribromoanisole (TBA) in wine at low ng L(-1) levels was developed. A robust SPME method was developed by optimizing several different parameters, including type of fiber, salt addition, sample volume, extraction and desorption time. The quantification limit for TCA and TBA in wine was lowered substantially using GC-HRMS in combination with the optimized SPME method and allowed the detection of low analyte concentrations (ng L(-1)) with good accuracy. Limits of quantification for red wine of 0.3 ng L(-1) for TCA and 0.2 ng L(-1) for TBA with gas chromatography-negative chemical ionization mass spectrometry and 0.03 ng L(-1) for TCA and TBA were achieved using GC-HRMS. The method was applied to 30 wines of which 4 wines were sensorically qualified as cork defected. TCA was found in three of these wines with concentrations in the range 2-25 ng L(-1). TBA was not detected in any of the samples.  相似文献   

8.
A solid-phase microextraction (SPME) procedure for the determination of four haloanisoles (2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, pentachloroanisole and 2,4,6-tribromoanisole), as well as their precursor halophenols (2,4,6-trichlorophenol, 2,3,4,6-tetrachlorophenol, pentachlorophenol and 2,4,6-tribromophenol), involved in the presence of cork taint in wine, was developed. Firstly, analytes were concentrated on a SPME fiber, and then halophenols were derivatised using N-methyl-N-trimethylsilyltrifluoroacetamide (MSTFA). The compounds were desorbed for 5 min in the gas chromatography injector port and then determined with an electron capture detector. The influence of different parameters on the efficiency of extraction (volume of sample, type of fibre coating and time) and derivatisation (time, temperature and volume of MSTFA) steps was evaluated. Polyacrylate (PA) was selected as the extraction fiber, optimised parameters for SPME were 10 ml of wine, temperature 70 degrees C and extraction time 60 min. The optimal conditions identified for the derivatisation step were temperature 25 degrees C, reagent volume 50 microl and extraction time 25 min. Under optimal conditions, the proposed method showed satisfactory linearity, precision and detection limits. The method was applied successfully to the analysis of red wine samples. To our knowledge, this is the first time that headspace (HS) SPME combined with on-fiber derivatisation has been applied to determine cork taint responsible compounds in wine.  相似文献   

9.
A headspace solid-phase microextraction (HS-SPME) method for the determination of 12 haloanisoles in wine and spirit samples using gas chromatography with atomic emission detection (GC-AED) was developed. The different factors affecting the efficiency of the extraction were carefully optimized. The divinylbenzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was the most suitable for preconcentrating the analytes from the headspace of the sample solution. Sample:water dilutions of 3:4 and 1:6 for wines and spirits, respectively, and the use of a mixed bromochloroanisole compound as internal standard allowed sample quantification against external standards prepared in the presence of 5% (v/v) ethanol. Detection limits ranged from 1.2 to 18.5ngL(-1), depending on the compound and the sample analyzed, with a fiber time exposure of 60min at 75 degrees C. The optimized method was successfully applied to different samples, and several of the studied haloanisoles were detected at concentration levels ranging from 10.3ngL(-1) to 1.14ngmL(-1).  相似文献   

10.
A novel dispersive liquid-liquid microextraction (DLLME) method, coupled to gas chromatography-tandem mass spectrometry (GC-MS/MS), was developed for simultaneously determining the main compounds responsible for cork taint (2,4,6-trichloranisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA), 2,4,6-tribromoanisole (TBA) and pentachloranisole (PCA)) and Brett character (4-ethylguaiacol (EG), 4-ethylphenol (EP), 4-vinylguaiacol (VG) and 4-vinylphenol (VP)) in wines. Optimisation of DLLME procedure was performed by evaluating the type of disperser and extraction solvents and the temperature and salt addition effects. The volumes of disperser and extraction solvents were also optimised by means of a central composite design combined with desirability functions. Under optimum conditions, 5 mL of wine were extracted with an extraction mixture consisting of 1.43 mL of acetone, and 173 μL of chloroform at room temperature. The analytical characteristics of the method were evaluated. Satisfactory linearity (with correlation coefficients over 0.992), repeatability (below 11.6%) and between-days precision (below 11.0%) were obtained for all target analytes. Detection limits attained were at similar levels or even lower than the olfactory threshold of the studied compounds. Finally, the developed method was successfully applied to the analysis of wine samples. To our knowledge, this is the first time that DLLME has been applied to simultaneously determine the compounds responsible for cork taint and Brett character in wine.  相似文献   

11.
A dispersive liquid-liquid microextraction (DLLME) method has been optimised for simultaneously extracting 2,4,6-trichloranisole (TCA), 2,3,4,6-tetrachloroanisole (TeCA), 2,4,6-tribromoanisole (TBA), pentachloroanisole (PCA), 2,4,6-trichlorophenol (TCP), 2,3,4,6-tetrachlorophenol (TeCP), 2,4,6-tribromophenol (TBP) and pentachlorophenol (PCP) from wine. The haloanisoles and halophenols were automatically determined using a gas chromatography-electron-capture detection (GC-ECD) system. Derivatisation of halophenols was performed at the same time as DLLME. Firstly, disperser and extraction solvents, salt addition and temperature conditions were selected. Then, the volume of disperser solvent, extraction solvent and derivatisation agent, and the percentage of base were optimised by means of a central composite design combined with desirability functions. The optimal extraction-derivatisation conditions found were 1.3 mL of acetone, 150 μL of carbon tetrachloride, 75 μL of acetic anhydride and a percentage of base of 0.7%; with no salt addition and at room temperature. Under these conditions, the proposed method showed satisfactory linearity (with correlation coefficients over 0.994), repeatability (below 9.7%) and reproducibility (below 9.9%). Moreover, detection limits were lower than the olfactory threshold of the compounds. The developed method was successfully applied to the analysis of red wine samples. To our knowledge, this is the first time that DLLME has been applied to determine cork taint responsible compounds in wine.  相似文献   

12.
The accurate determination of marker chemical species in grape, musts, and wines presents a unique analytical challenge with high impact on diverse areas of knowledge such as health, plant physiology, and economy. Capillary electromigration techniques have emerged as a powerful tool, allowing the separation and identification of highly polar compounds that cannot be easily separated by traditional HPLC methods, providing complementary information and permitting the simultaneous analysis of analytes with different nature in a single run. The main advantage of CE over traditional methods for wine analysis is that in most cases samples require no treatment other than filtration. The purpose of this article is to present a revision on capillary electromigration methods applied to the analysis of wine and its precursors over the last decade. The current state of the art of the topic is evaluated, with special emphasis on the natural compounds that have allowed wine to be considered as a functional food. The most representative revised compounds are phenolic compounds, amino acids, proteins, elemental species, mycotoxins, and organic acids. Finally, a discussion on future trends of the role of capillary electrophoresis in the field of analytical characterization of wines for routine analysis, wine classification, as well as multidisciplinary aspects of the so-called "from soil to glass" chain is presented.  相似文献   

13.
Cork taint is a musty off-flavour in wines mainly caused by 2,4,6-trichloroanisole, but other haloanisoles can contribute. In this work, a method for the extraction of 2,4,6-trichloroanisole, 2,4,6-tribromoanisole and 2,6-dichloroanisole has been developed. The procedure involves the extraction of the haloanisoles from cork by pressurised liquid extraction and the analysis of the extracts by both GC-μECD and GC-MS-MS. A central composite design was used to investigate the dependence of the recoveries of the analytes on the temperature, percentage pentane-diethyl ether ratio and the extraction time. Experimental data were then processed by using the multiple regression analysis in order to calculate a mathematical model representing the relationship between factors and responses and to determine the best experimental conditions for PLE method. These conditions corresponded to a temperature of 176 °C, an extraction time between 2.8 and 4 min and an 80:20 pentane:diethyl ether ratio.  相似文献   

14.
Abstract

Studying wine mineral profile has been proven as a valuable tool in geographical origin discrimination and authenticity for both producers and consumers. Adulteration of wines, in terms of geographical origin or variety, is considered a major topic of extensive research. Traceability and authenticity of wines have been previously studied on the basis of typical mineral element patterns by means of chemometric methods. In this context, analytical methods were developed for the determination of mineral elements in wines by inductively coupled plasma–mass spectrometry. This study aimed at classifying selected varietal Greek wines from various regions by employing instrumental analysis. Preliminary data of wine mineral content enabled for the classification of samples according to geographical origin and variety. However, further work is required in order to draw more valid conclusions and to obtain a detailed map of the mineral element content of Greek wines according to their geographical origin and/or variety.  相似文献   

15.
A solid-phase microextraction (SPME) followed by a gas chromatographic-mass spectrometric (GC-MS) determination has been developed and validated for the determination of cyprodinil and fludioxonil in white wine samples. Extraction parameters such as the selection of SPME coating, the effect of the temperature, the effect of the headspace volume and the salt addition were studied and optimized, together with GC-MS analytical conditions. The divinylbenzene-Carboxen-polydimethylsiloxane (DVB-CAR-PDMS) fiber was the most appropriate for the determination of the two pesticides in wine. The quality parameters of the proposed method demonstrated a good precision (RSD about 5%), with detection limits of 0.1 and 0.2 microg/l for cyprodinil and fludioxonil, respectively. Fifteen commercial white wine samples produced in Rías Baixas area in Galicia (N.W. Spain) were analyzed with the SPME-GC-MS procedure. Some of the commercial wines (75%) presented the two pesticides in concentrations ranging from 0.9 to 28.6 microg/l. In conclusion, SPME-GC-MS has a great potential for fungicide determination in wines.  相似文献   

16.
In this study a high-performance liquid chromatography (HPLC) method was developed for the determination of trans-astringin in wine using fluorescence detection. This is the first time the occurrence of trans-astringin has been reported in wine. The method allows analysis of both red and white wine samples with no prior treatment. The quantification threshold is 0.03 mg/l. Levels of trans-astringin in the French wines analyzed ranged from 0.09 mg/l to 0.29 mg/l. The reproducibility of the method was measured and the CV was less than 4.8% for both red and white wines.  相似文献   

17.
The commercial Saccharomyces cerevisiae Uvaferme 299 wine yeast was immobilized on cork pieces to produce a biocatalyst for use in dry red wine making. The immobilized biocatalyst was suitable for clarified and non-clarified grape must fermentation at ambient and low temperatures (0–25 °C). Fermentation times were low and very low amounts of residual sugar were detected, showing suitability for dry wine production. The presence of suspended solids in the non-clarified must did not affect the activity of the immobilized cells. Complete fermentation of sugars at 0 °C was possible with immobilized Uvaferme 299, although not a cryotolerant strain, indicating a cryoprotective effect of cork. The presence of cork did not affect the composition of major volatiles with methanol and acetaldehyde kept at low levels. Reduction of amyl alcohols on total volatiles was also observed in wines fermented at low temperatures. Differences in the headspace aroma profile in wines produced by immobilized and free cells were found by GC–MS analysis, but no cork taint compounds were detected.  相似文献   

18.
Stir bar sorptive extraction and liquid desorption followed by large volume injection coupled to gas chromatography-quadrupole mass spectrometry (SBSE-LD/LVI-GC-qMS) had been applied for the determination of volatiles in wines. The methodology was optimised in terms of extraction time and influence of ethanol in the matrix; LD conditions, and instrumental settings. The optimisation was carried out by using 10 standards representative of the main chemical families of wine, i.e. guaiazulene, E,E-farnesol, β-ionone, geranylacetone, ethyl decanoate, β-citronellol, 2-phenylethanol, linalool, hexyl acetate and hexanol. The methodology shows good linearity over the concentration range tested, with correlation coefficients higher than 0.9821, a good reproducibility was attained (8.9-17.8%), and low detection limits were achieved for nine volatile compounds (0.05-9.09 μg L−1), with the exception of 2-phenylethanol due to low recovery by SBSE. The analytical ability of the SBSE-LD/LVI-GC-qMS methodology was tested in real matrices, such as sparkling and table wines using analytical curves prepared by using the 10 standards where each one was applied to quantify the structurally related compounds. This methodology allowed, in a single run, the quantification of 67 wine volatiles at levels lower than their respective olfactory thresholds. The proposed methodology demonstrated to be easy to work-up, reliable, sensitive and with low sample requirement to monitor the volatile fraction of wine.  相似文献   

19.
This work is dedicated to wine quality assessment methods as a problem of considerable current interest. Well-known approaches to wine quality assessment are considered based on the concentrations of volatile substances in wines and on the results of their taste tests. Comparative analysis was carried out for the evaluation of wines on a nominal scale of quality (high, medium, low, and adulterated) by means of discriminant analysis. It was found that the classification of wines based on quality with the use of discriminant analysis as a ranging analysis method with consideration for the concentrations of volatile substances, which are responsible for their organoleptic properties, is highly competitive with their expert (tasting) evaluation. A mathematical model was constructed for the classification of wines into the above categories, and a program module was developed for the automation of calculations.  相似文献   

20.
The parameters of analytical procedures developed for direct ETAAS determination of Pb in wine are discussed. Atomic absorption spectrometers based on transversal and longitudinal Zeeman effect, wall and integrated platform atomization with two main approaches: (i) measurements in the presence of modifier and (ii) measurements without using any modifier are compared. The optimal temperature programs are defined according to the pre-treatment and atomization curves constructed in the presence of different types of wines. For all investigated instrumental systems, 1:1 dilution of wine sample with 0.2 mol L−1 HNO3 is recommended. Matrix interferences observed, call for standard addition calibration method for Pb quantification in wines. The detection limit (3σ) achieved for wine diluted in the ratio of 1:1 varied from 0.8 to 1.9 μg L−1 depending on the instrument used. The relative standard deviation for the concentration range of 10 to 80 μg L−1 Pb in wine is typically between 4–8%. The accuracy of the analytical procedures recommended was confirmed by comparing the results obtained with those found for wine samples previously digested with HNO3-H2O2 mixture, by added/found method and by parallel analysis using different instruments. A total of 66 wine samples from different regions of Macedonia were analyzed.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号