首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ew baths for Co-Pt electrodeposition have been developed and developed and ECD thin films (≤0.3μm) have been prepared and characterized structurally (XRD), morphologically (SEM), chemically (EDS) and magnetically (VSM); their improved corrosion, oxidation and wear resistance have been ascertained. Such alloys appear suitable candidates for magnetic storage systems, from all technological viewpoints. The originally formulated baths contain Co-NH3-citrate complexes and Pt-p salt (Pt(NH3)2(NO2)2). Co-Pt thin films of fcc structure are deposited obtaining microcrystallites of definite composition. At Pt 30 at% we obtain fcc films with a=0.369 nm, HC=80 kA m, and high squareness; increasing Co and decreasing Pt content in the bath it is possible to reduce the Pt content of the deposit, obtaining fcc structures containing two types of microcrystals with a = 0.3615 nm and a = 0.369 nm deposited simultaneously. NaH2PO2 additions to the bath have a stabilizing influence on the fcc structure of a = 0.3615 nm, Pt 20 at% and HC as high as 200 kA/m, with hysteresis loops suitable for both longitudinal or perpendicular recording, depending on the thickness. We have prepared 2.5 in. hard disks for magnetic recording with ECD Co-Pt 20 at% with a polished and texturized ACD Ni-P underlayer. Pulse response, 1F & 2F frequency and frequency sweep response behaviour, as well as noise and overwrite characteristics have been measured for both our disks and high-standard sputtered Co-Cr-Ta production disks, showin improved D50 for Co-Pt ECD disks. The signal-to-noise ratio could be improved by pulse electrodeposition and etching post-treatments.  相似文献   

2.
First-principles calculations are performed to investigate the electronic structures and magnetic properties of(Fe, Co)-codoped 4H-SiC using the generalized gradient approximation plus Hubbard U method. We find that 4H-SiC doped with an isolated Fe atom and an isolated Co atom produces a total magnetic moment of 5.98 μ_B and 6.00 μ_B respectively. We estimate T_C of about 263.1 K for the(Fe, Co)-codoped 4H-SiC system. We study ferromagnetic and antiferromagnetic coupling in(Fe, Co)-codoped 4H-SiC. Ferromagnetic behavior is observed.The strong ferromagnetic couplings between local magnetic moments can be attributed to p–d hybridization between Fe, Co and neighboring C. However, the(Fe, Co, V_(Si))-codoped 4H-SiC system shows antiferromagnetic coupling when an Si vacancy is introduced in the same 4H-SiC supercell. The results may be helpful for further study on transition metal-codoped systems.  相似文献   

3.
《中国物理 B》2021,30(9):97501-097501
Among the layered two-dimensional ferromagnetic materials(2 D FMs),due to a relatively high T_C,the van der Waals(vdW) Fe_3 GeTe_2(FGT) crystal is of great importance for investigating its distinct magnetic properties.Here,we have carried out static and dynamic magnetization measurements of the FGT crystal with a Curie temperature TC ≈ 204 K.The M-H hysteresis loops with in-plane and out-of-plane orientations show that FGT has a strong perpendicular magnetic anisotropy with the easy axis along its c-axis.Moreover,we have calculated the uniaxial magnetic anisotropy constant(K_1)from the SQUID measurements.The dynamic magnetic properties of FGT have been probed by utilizing the high sensitivity electron-spin-resonance(ESR) spectrometer at cryogenic temperatures.Based on an approximation of single magnetic domain mode,the K_1 and the effective damping constant(α_(eff)) have also been determined from the out-of-plane angular dependence of ferromagnetic resonance(FMR) spectra obtained at the temperature range of 185 K to T_C.We have found large magnetic damping with the effective damping constant α_(eff) ~ 0.58 along with a broad linewidth(ΔH_(pp) 1000 Oe at 9.48 GHz,H ‖ c-axis).Our results provide useful dynamics information for the development of FGT-based spintronic devices.  相似文献   

4.
俱海浪  李宝河  吴志芳  张璠  刘帅  于广华 《物理学报》2015,64(9):97501-097501
采用直流磁控溅射法在玻璃基片上制备了Pt底层的Co/Ni多层膜样品, 对影响样品垂直磁各向异性的各因素进行了调制, 通过样品的反常霍尔效应系统的研究了Co/Ni多层膜的垂直磁各向异性. 结果表明, 多层膜中各层的厚度及周期数对样品的反常霍尔效应和磁性有重要的影响. 通过对多层膜各个参数的调制优化, 最终获得了具有良好的垂直磁各向异性的Co/Ni多层膜最佳样品Pt(2.0)/Co(0.2)/Ni(0.4)/Co(0.2)/Pt(2.0), 经计算, 该样品的各向异性常数Keff 达到了3.6×105 J/m3, 说明样品具备良好的垂直磁各向异性. 最佳样品磁性层厚度仅为0.8 nm, 样品总厚度在5 nm以内, 可更为深入的研究其与元件的集成性.  相似文献   

5.
We have recently evidenced a junction magnetoresistance (JMR) signal of about 5% in magnetic tunnel junctions (MTJs) with ZnS as tunnel barrier layer. The MTJ were grown by magnetron sputtering on Si (1 1 1) substrate at room temperature and have the following structure: Fe6 nmCu30 nmCoFe1.8 nmRu0.8 nmCoFe3 nmZnS2 nmCoFe1 nmFe4 nmCu10 nmRu3 nm.

The hard magnetic bottom electrode consists of an artificial antiferromagnetic structure in which the rigidity is ensured by the antiferromagnetic exchange coupling between two FeCo layers through an Ru spacer layer. The magneto-transport for these MTJ has been studied at various temperatures to gain understanding of the transport mechanism in such junctions. A strong and linear increase of the JMR is observed as the temperature is decreased to reach 10% at a low temperature, while the conductance decreases with decreasing temperature. To understand the mechanism at the origin of these behaviors, the contribution of magnon is taken into account. It is concluded that the observed behaviors are not only related to the magnon contribution but that resonant low-level states inside the barrier can assist the tuneling transport.  相似文献   


6.
At PTB, for application in rapid single flux quantum (RSFQ) and voltage standard circuits, the development of highly integrated SDE circuits is focused on devices based on intrinsically shunted Josephson junctions in the SINIS and SNS technologies. In SINIS technology, the fabrication process has been optimized to values of the critical current density of jC=500 A/cm2 and the characteristic voltage of VC=190 μV. To raise the circuit integration level, successive steps of development are shown by the example of the layout of an elementary RSFQ cell designed for higher values of jC. In SNS technology, a fabrication process has been developed to produce small ramp-type junctions with contact areas smaller than 0.4 μm2 and with values for jC and VC of about jC=200 kA/cm2 and VC=20 μV. The design allows the SNS junction size to be further reduced down to the deep sub-micron range.  相似文献   

7.
Single-layer washer-type high-Tc YBa2Cu3O7−x rf SQUIDs with grain-boundary Josephson junctions, as well as low-Tc Nb rf SQUIDs with Nb–Al2O3–Nb tunnel junctions, have been investigated in finite magnetic fields. It was shown experimentally that the suppression of the critical current of the Josephson junction due to the magnetic field leads to a modulation of the amplitude of the SQUID output signal. The role of the “unwanted” junction in high-Tc rf SQUIDs, which is formed by the grain boundary running through the washer of the SQUIDs on bicrystal substrates, has also been clarified. The drop of the SQUID signal at a finite magnetic field is originated by the penetration of the magnetic field into the unwanted junction. Based on these results, a direct radio-frequency method for the determination of the first critical field Hc1 for long Josephson junctions has been developed.  相似文献   

8.
9.
The magnetic and structural properties of rapidly quenched (Pr80Ga20)100-xFex, RTbFe and RTbFe(Co)M alloys are examined over a wide range of chemical compositions, where R ≡ Pr, Sm, MM and M ≡ B and Si. The Ga-containing samples show relatively high coercive fields (up to 3 kOe) in the amorphous state which subsequently disappear after crystallization. On the other hand, the high coercive fields (≈5 kOe) of melt-spun RTbFe samples decrease slightly after crystallization but their magnetic moment increases substantially. Melt-spun RTbFe(Co)M samples are generally magnetically soft in the as-quenched state. Magnetic hardening is produced by annealing the samples around 750°C leading to coercive fields which could not be measured with an ordinary electromagnet (Hc #62; 23 kOe). The best properties have been obtained on a Pr14Fe71B15 sample with a coercive field of 8 kOe and an energy product of 8.5 MGOe. Thermomagnetic data show that a structural transformation takes place upon heating the samples to 750°C. The Curie temperature of the precipitate phase is around 320°C while that of the as-quenched phase is around 160°C. Transmission electron microscope studies show a very fine precipitate structure with a precipitate size below 100 Å. The precipitate phase is believed to be highly anisotropic leading to the observed hard magnetic properties.  相似文献   

10.
To investigate the magnetic properties of disordered Fe70Pt30 Invar alloy under high pressure, measurements of the real part of the AC susceptibility (χ) were made under pressure up to 7.5 GPa in the temperature range 4.2–385 K using a cubic anvil high-pressure apparatus. The Curie temperature (TC) decreased with increasing pressure, and then, two new high-pressure magnetic phases appeared. These results show that the ferromagnetism of Fe–Pt Invar alloy becomes weaker, and the antiferromagnetic interaction becomes dominant with increasing pressure.  相似文献   

11.
The transparency of the tunnel barriers in double-barrier junctions influences the critical current density and the form of the current–voltage characteristics (IVC). Moreover, the barrier asymmetry is an important parameter, which has to be controlled in the technological process. We have performed a systematic study of the influence of the barrier transparency on critical current, IC, and normal resistance, RN, by preparing SIS and SINIS junctions under identical technological conditions and comparing their transport properties. We have fabricated Nb/Al2O3/Nb and Nb/Al2O3/Al/Al2O3/Nb devices with different current densities using a conventional fabrication process, varying pressure and oxidation time. The thickness of the Al middle electrode in all Nb/Al2O3/Al/Al2O3/Nb junctions was 6 nm. Patterning of the multilayers was done using conventional photolithography and the selective niobium etching process. The current density of SIS junctions was changed in the range from 0.5 to 10 kA/cm2. At the same conditions the current density of SINIS devices revealed 1–100 A/cm2 with non-hysteretic IVC and characteristic voltages, ICRN, of up to 200 μV. By comparing the experimental and theoretical temperature dependence of the ICRN product we estimated the barrier transparency and its asymmetry. The comparison shows a good agreement of experimental data with the theoretical model of tunneling through double-barrier structures in the dirty limit and provides the effective barrier transparency parameter γeff≈300. A theoretical framework is developed to study the influence of the barrier asymmetry on the current–phase relationship and it is proposed to determine the asymmetry parameter by measuring the critical current suppression as function of applied microwave power. The theoretical approach to determine the non-stationary properties of double-barrier junctions in the adiabatic regime is formulated and the results of calculations of the IV characteristics are given in relevant limits. The existence and the magnitude of a current deficit are predicted as function of the barrier asymmetry.  相似文献   

12.
We report on the giant magnetoresistance enhancement in Co/Ru/Co-based spin valve structures with nano-semiconducting layer. The films were grown by ion beam sputtering on glass substrate at room temperature. The soft layer is composed of Fe/Co bilayers, while the hard layer is ensured by the Co/Ru/Co artificial antiferromagnetic subsystem (AAF) as follows: Fe5nm/Co0.5nm/Cu3nm/Co3nm/Ru0.5nm/Co3nm/Cu2nm/Cr2nm. This structure shows a giant magnetoresistance (GMR) signal of about 1.7%. To confine the electrons inside the spin valve structure, a 1.5 nm thick ZnSe semiconducting layer has been grown on the top of the AAF. This induces a strong GMR increase, up to 4%, which can be attributed to a dominant potential step at the Co/ZnSe interface.  相似文献   

13.
Magnetization (0–10 Oe) and magnetic relaxation measurements were carried out in the temperature range between 4.2 and 300 K for three picture-frame samples of Fe65Ni35 alloy whose edges were parallel to 100, 110 and 111, respectively. The typical temperature Tg and the magnetic field Hg which correspond to the anomalous temperature in the χ-T curve and inflection field in the σ-H curve, respectively are summarized and H-Tg and Hg-T diagrams are obtained. A strong magnetic relaxation is observed along the Hg-T line. The dependence of Hg on the crystallographic direction and on the temperature are discussed by the thermal activation process of the 180° domain wall which is pinned strongly by the antiferromagnetic clusters below Tg. The anomaly of magnetization of Fe65Ni35 alloy can be interpreted by the macroscopic picture of the coexistence of ferromagnetic and antiferromagnetic-like regions which may be caused by a statistical fluctuation of alloy composition.  相似文献   

14.
周广宏*  潘旋  朱雨富 《物理学报》2013,62(9):97501-097501
研究了磁场诱导生长的BiFeO3/Ni18Fe19磁性双层膜中 的交换偏置及其热稳定性. 结果表明: BiFeO3/Ni18Fe19双层膜中的交换偏置场Hex未表现出明显的磁练习效应. 在负饱和磁场等待过程中, BiFeO3/Ni18Fe19双层膜磁滞回线的前支和后支曲 线都随着在负饱和磁场中等待时间tsat的增加向正场方向偏移. 交换偏置场Hex的大小随着等待时间tsat的增加而减小, 矫顽力Hc基本不变. 交换偏置场Hex的大小随测量温度Tm的升高变化不明显, 表现出良好的热稳定性; 但矫顽力HcTm的升高而显著减小. 良好的热稳定性应该来源于铁电性和反铁磁性间的共同耦合作用. 关键词: 多铁性 磁性薄膜 交换偏置 热稳定性  相似文献   

15.
Nanocrystalline Sm0.5Y0.5Co5 powders with high coercivity HC and enhanced remanence Mr were prepared by mechanical milling and subsequent annealing. Annealing temperatures T ranging from 973 to 1173 K, and times t ranging from 1 to 5 min were used. X-ray diffraction (XRD) and DC-magnetization measurements were carried out to study the microstructure and magnetic properties of these samples. XRD patterns demonstrate that the average grain size D of the nanocrystalline powders depends on the annealing temperature T and time t: D ranges from 11 nm (for T=973 K and t=1 min) to 93 nm (for T=1173 K and t=5 min). Magnetic measurements performed at room temperature indicate high coercivity values (HC>955 kA/m), and enhanced remanence (Mr/Mmax>0.5) for all samples. A strong annealing-induced grain size dependence of these magnetic properties was found.  相似文献   

16.
Some recent results of magnetic and transport measurements on single crystals of the Er(Ni,Co)2B2C series will be presented and discussed, in particular, possible evidence of a superzone gap formation at the antiferromagnetic phase transition in pure ErNi2B2C, detailed anisotropic HT phase diagrams and their modification with Co doping, and enhancement of the superconducting critical current in the weak ferromagnetic phase.  相似文献   

17.
The data on the resistance and magnetoresistance (MR) as well as measurements of the linear and nonlinear susceptibilities are presented for a Nd0.75Ba0.25MnO3 single crystal with the Curie temperature TC≈129 K. Although this compound remains insulating in the ferromagnetic state, its resistance has an anomaly near TC and it reveals the colossal magnetoresistance. The data on the magnetic response are well described by the dynamic scaling theory for 3D isotropic ferromagnets in the paramagnetic critical region at τ>τ*≈0.11, τ=(TTC)/TC. Below τ* an anomalous critical behavior is found that suggests the coexistence of two magnetic phases. This behavior is discussed in terms of a phase separation which can occur in the moderately doped manganites exhibiting an orbital ordering.  相似文献   

18.
万素磊  何利民  向俊尤  王志国  邢茹  张雪峰  鲁毅  赵建军 《物理学报》2014,63(23):237501-237501
采用传统固相反应法制备钙钛矿型锰氧化物 (La0.8Eu0.2)4/3Sr5/3Mn2O7多晶样品, X-射线衍射分析表明, 样品(La0.8Eu0.2)4/3Sr5/3Mn2O7结构呈现良好的单相. 通过磁化强度随温度的变化曲线(M-T)、不同温度下磁化强度随磁场的变化曲线(M-H)和电子自旋共振谱发现: 在300 K以下, 随着温度的降低, 样品先后经历了二维短程铁磁有序转变 (TC2D ≈ 282 K)、三维长程铁磁有序转变(TC3D ≈ 259 K)、奈尔转变(TN ≈ 208K)和电荷有序转变(TCO ≈ 35 K); 样品 (La0.8Eu0.2)4/3Sr5/3Mn2O7TN以下, 主要处于反铁磁态; 在TC3D达到370 K时, 样品处于铁磁-顺磁共存态, 在370 K以上时样品进入顺磁态. 此外, 分析电阻率随温度的变化曲线(ρ-T)得到: 样品在金属-绝缘转变温度(TP ≈ 80 K)附近出现最大磁电阻值, 其位置远离TC3D, 表现出非本征磁电阻现象, 其磁电阻值约为61%. 在TCO以下, 电阻率出现明显增长, 这是由于温度下降使原本在高温部分巡游的eg电子开始自发局域化增强所致. 通过对 (La0.8Eu0.2)4/3Sr5/3Mn2O7ρ-T 曲线拟合, 发现样品在高温部分的导电方式基本遵循小极化子的导电方式. 关键词: 磁性 电性 金属-绝缘转变温度 电子自旋共振  相似文献   

19.
Magnetization reversal process in thin Co nanowires   总被引:2,自引:0,他引:2  
The magnetoresistance of single Co nanowires of various widths is investigated at low temperatures applying magnetic fields μ0H up to 4.5 T. The in-plane longitudinal magnetoresistance shows pronounced features at coercive fields Hc explained by the anisotropic magnetoresistance indicating the magnetization reversal process. Monte Carlo simulations present the magnetization distribution during the reversal process, revealing different mechanisms depending on the wire width.  相似文献   

20.
We have investigated the magnetic behavior and the structural properties of ferromagnetic–antiferromagnetic systems (NiFe–IrMn and Co–IrMn) deposited directly on a thin tantalum buffer layer (bottom configuration) or above a thin Al2O3 tunnel barrier layer (top configuration). In the bottom configuration, the bilayer system exhibits higher magnetic performances than in the top configuration in terms of thermal stability. We have performed a detailed structural study by X-ray diffraction and high-resolution transmission electron microscopy which allow us to establish a clear correlation between the situation of the bilayer with respect to the tunnel barrier, its texture and its magnetic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号