首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tunneling magnetoresistance values above 20% and 40% were obtained for as-deposited and annealed tunnel junctions, Ta/NiFe/Cu/NiFe/IrMn/CoFe/Al-oxide/CoFe/NiFe/Ta, respectively. Exchange biasing field increased from 270 to 550 Oe after annealing resulting from sharpening of the IrMn/CoFe interface. dV/dI vs. V curves showed asymmetric profiles, which were due to asymmetry of the CoFe/Al-oxide interfaces and difference in microstructure of the CoFe layers.  相似文献   

2.
When magnetic tunnel junctions (MTJ) are built into a memory device they will be arranged in a matrix; therefore some of the not addressed elements will be exposed to a significant field during the switching of one element. It has to be avoided that the state of not selected MTJ is changed during this process. Here we present data on the stability of MTJ against small fields which occur during a writing process.  相似文献   

3.
The effect of spin relaxation on tunnel magnetoresistance (TMR) in a ferromagnet/superconductor/ferromagnet (FM/SC/FM) double tunnel junction is theoretically studied. The spin accumulation in SC is determined by balancing of the spin-injection rate and the spin-relaxation rate. In the superconducting state, the spin-relaxation time τs becomes longer with decreasing temperature, resulting in a rapid increase of TMR. The TMR of FM/SC/FM junctions provides a useful probe to extract information about spin-relaxation in superconductors.  相似文献   

4.
We study tunnel magnetoresistance (TMR) through grain boundaries where tunneling electrons interact with localized spins via ferromagnetic exchange interaction. It is shown that spin–flip tunneling due to the exchange interaction gives rise to appreciable effects on TMR, and that TMR increases almost linearly with increasing magnetic field.  相似文献   

5.
We comment on both recent progress and lingering puzzles related to research on magnetic tunnel junctions (MTJs). MTJs are already being used in applications such as magnetic-field sensors in the read heads of disk drives, and they may also be the first device geometry in which spin-torque effects are applied to manipulate magnetic dynamics, in order to make non-volatile magnetic random access memory. However, there remain many unanswered questions about such basic properties as the magnetoresistance of MTJs, how their properties change as a function of tunnel-barrier thickness and applied bias, and what are the magnitude and direction of the spin-transfer-torque vector induced by a tunnel current.  相似文献   

6.
Sub-micron sized magnetic tunnel junctions are fabricated by electron beam lithography. Magnetoresistance measurements were done at crossed easy- and hard-axis fields and the critical switching curves for 3 different sub-μm junctions are discussed. Single domain like switching according to the Stoner and Wohlfarth model can be achieved, but Néel coupling effects and AAF stray field effects have to be controlled.  相似文献   

7.
We conducted a detailed study of hard axis magnetic field (Hhard) dependence on current-induced magnetization switching (CIMS) in MgO-based magnetic tunnel junctions (MTJs) with various junction sizes and various uniaxial anisotropy fields. The decreases in critical current density (Jc) and the intrinsic critical current density (Jc0) estimated from the pulse duration dependence on Jc in CIMS are observed when applying Hhard for all MTJs. The decrease in energy barrier of CIMS is also observed except for the largest sample. These results indicate that the reduction of Jc is attributable to both the increase of spin-transfer efficiency and the decrease in energy barrier in the case of applying Hhard. The Jc0 decreases with increase in the mutual angle between the direction of magnetization and the easy axis (θf), which is consistent with the theoretical prediction proposed by Slonczewski. The degree of the reduction of Jc0 for the same value of Hhard decreases with decreasing size of MTJs. This behavior is considered to be related to not only decrease in θf due to the increase in anisotropy field in MTJs, but also to the increase in the variance of the initial angle of magnetization due to the thermally activated magnon excitation. The stable switching endurance related to CIMS was observed in a wide range of MTJ sizes when applying Hhard. Moreover, we proposed a new architecture and a new switching method considering write disturbance. These results would be useful for application to spin memory and other spin-electronic devices.  相似文献   

8.
Electron tunneling through a single discrete level of a quantum dot, coupled to two ferromagnetic leads, is studied theoretically in the sequential tunneling regime. Electron correlations and spin relaxation processes on the dot are taken into account. It is shown that strong Coulomb correlations can enhance tunnel magnetoresistance in a certain bias range. The effect, however, is suppressed by spin-flip processes.  相似文献   

9.
Two components of the spin torque exerted on a free ferromagnetic layer of finite thickness and a half-infinite ferromagnetic electrode in single tunnel junctions have been calculated in the spin-polarized free-electron-like one-band model. It has been found that the torque oscillates with the thickness of ferromagnetic layer and can be enhanced in the junction with the special layer thickness. The bias dependence of torque components also significantly changes with layer thickness. It is non-symmetric for the normal torque, in contrast to the symmetric junctions with two identical half-infinite ferromagnetic electrodes. The asymmetry of the bias dependence of the normal component of the torque can be also observed in the junctions with different spin splitting of the electron bands in the ferromagnetic electrodes.  相似文献   

10.
Magnetostatic ferromagnetic coupling in magnetic tunnel junctions was selectively analyzed. We have shown that in samples involving polycrystalline magnetic films, beyond the orange-peel coupling, an important class of interaction is related to the dispersion fields associated to magnetic inhomogeneities. These magnetization fluctuations were described in terms of magnetic roughness arising from the local anisotropy fluctuations. Therefore, using roughness data extracted from atomic/ magnetic force microscopy analysis, the amplitude and the variation with distance of the magnetostatic interactions were selectively quantified. Received 7 December 2001  相似文献   

11.
The spin-polarized electron conductance perpendicular to layers of a random magnetic multilayer is evaluated from first principles. We employ the Landauer formulation in the framework of the tight-binding linear muffin-tin orbital approach and the surface Green-function technique. The disorder in the bulk and at interfaces is included in terms of lateral supercells confined to individual atomic layers. The application is made to interleave and separate multilayers with a different order of magnetic and non-magnetic layers with generally non-collinear alignments of layer magnetizations.  相似文献   

12.
We show for a simple d-band TB Hamiltonian that noncollinear magnetic configurations can contribute to large inverse giant magnetoresistance (IGMR) ratios. We make a systematic study as a function of band filling, magnetic moment and canting angle for some simple model examples and use the outcome of this study to interpret the experimentally observed IGMR ratios on LaMn2Ge2.  相似文献   

13.
We measured inelastic electron tunneling (IET) spectra and conductance for MgO tunneling magnetoresistance (TMR) films to obtain information on the ferromagnetic/barrier layer interface. The IET spectra showed the difference between amorphous and crystalline structures in the barrier. In the magnetic tunnel junction (MTJ) with a crystalline barrier the IET spectra indicated an Mg-O phonon peak at a low bias voltage by measurement with a parallel magnetization configuration. On the other hand, no peak was observed in the MTJ with an amorphous barrier.  相似文献   

14.
The crystallization characteristics of a middle CoFeB free layer in a magnetic tunnel junction (MTJ) with double MgO barriers were investigated by tunneling magnetoresistance (TMR) measurements of patterned cells across an 8-inch wafer. The MTJ structure was designed to have two CoFeB free layers and one bottom pinned layer, separated by MgO tunnel barriers. The observed resistance showed three types of TMR curves depending on the crystallization of the middle CoFeB layer. From the analysis of TMR curves, coherent crystallization of the middle CoFeB layer with the top and bottom MgO barriers was found to occur non-uniformly: About 80% of the MTJ cells in the wafer exhibited coherent crystallization of the middle CoFeB layers with the bottom MgO tunnel barrier, while others had coherent crystallization with the top MgO tunnel barrier or both barriers. This non-uniform crystallization of the middle CoFeB layer in a double MTJ was also clearly observed in tunneling electron microscopy images. Thus, control of the crystallization of the middle CoFeB layer is important for optimizing the MTJ with double MgO barriers, and especially for the fabrication of double barrier MTJ on a large area substrate.  相似文献   

15.
In this paper we study the asymmetric voltage behavior (AVB) of the tunnel magnetoresistance (TMR) for single and double barrier magnetic tunnel junctions (MTJs) in range of a quasi-classical free electron model. Numerical calculations of the TMR–V curves, output voltages and IV characteristics for negative and positive values of applied voltages were carried out using MTJs with CoFeB/MgO interfaces as an example. Asymmetry of the experimental TMR–V curves is explained by different values of the minority and majority Fermi wave vectors for the left and right sides of the tunnel barrier, which arises due to different annealing regimes. Electron tunneling in DMTJs was simulated in two ways: (i) Coherent tunneling, where the DMTJ is modeled as one tunnel system and (ii) consecutive tunneling, where the DMTJ is modeled by two single barrier junctions connected in series.  相似文献   

16.
A generalized approach to study quasiparticle transport across hybrid magnetic tunnel junctions (MTJs) is formulated using the non-equilibrium Green's function technique. This formalism allows for arbitrary thicknesses of the electrodes and the central scattering region comprising of materials with multiple electronic bands, and incorporates the many body interactions present in the electrode regions. While the method can be used to study the transport characteristics of various types of MTJs, we have used it to study the tunneling characteristics and magnetoresistance (MR) of MTJs in which s-f interaction is present at the electrode layers. It is also used to study the transport characteristics of MTJs with hybrid electrodes and double barrier. The magnetic correlation present in the electrodes is found to strongly influence the TMR. Eventhough the magnetic correlation in general suppress the TMR, the TMR is found to be enhanced strongly for certain band occupations of the electrodes. We observe a fall of TMR with increase in the number of layers in the insulating region. Band occupation of the metallic layer present at the middle of the insulating layers in the double barrier MTJ is found to be important in deciding its tunnel characteristics. Origin of the different types of behavior of TMR is analyzed in terms of the spin-dependent tunnel currents.  相似文献   

17.
We have recently evidenced a junction magnetoresistance (JMR) signal of about 5% in magnetic tunnel junctions (MTJs) with ZnS as tunnel barrier layer. The MTJ were grown by magnetron sputtering on Si (1 1 1) substrate at room temperature and have the following structure: Fe6 nmCu30 nmCoFe1.8 nmRu0.8 nmCoFe3 nmZnS2 nmCoFe1 nmFe4 nmCu10 nmRu3 nm.

The hard magnetic bottom electrode consists of an artificial antiferromagnetic structure in which the rigidity is ensured by the antiferromagnetic exchange coupling between two FeCo layers through an Ru spacer layer. The magneto-transport for these MTJ has been studied at various temperatures to gain understanding of the transport mechanism in such junctions. A strong and linear increase of the JMR is observed as the temperature is decreased to reach 10% at a low temperature, while the conductance decreases with decreasing temperature. To understand the mechanism at the origin of these behaviors, the contribution of magnon is taken into account. It is concluded that the observed behaviors are not only related to the magnon contribution but that resonant low-level states inside the barrier can assist the tuneling transport.  相似文献   


18.
The ab initio electronic structure of model Co/Al2O3 heterojunctions with varying interface quality is investigated. It is evidenced that the metal-induced gap states determine the position of the Fermi level relative to the bottom of the conduction band which defines the effective barrier height for tunnel transport. This introduces a new origin for barrier height fluctuations related to the interfaces.  相似文献   

19.
We report here that in perpendicular tunnel junction the hard layer demagnetizes when the soft layer is cycled. This happens faster when the cycling field is closer to the reversal field of the hard layer. Magnetic force microscopy imaging done at different stages of the cycle after several loops show compact demagnetized areas surrounded by large saturated zones in the hard layer. A mechanism based on interlayer magnetostatic coupling induced by the stray field created by domain wall in the soft layer is presented.  相似文献   

20.
Two junctions of Co/Al2O3/NiFe (J1) and La0.7Ca0.3MnO3/Al2O3/La0.7Ca0.3MnO3 (J2) were prepared to compare their tunneling magnetoresistance (TMR) in consideration of interfacial state effects. The structural and transport properties of the layered samples were characterized by X-ray and magnetic measurements, showing indeed an interfacial state dependence. The influences such as from a CoO sublayer in J1 and from interfacial coherence in J2 were discussed. The largest TMR observed amounts to 16% (290 K) for J1 and 65% (40 K) for J2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号