首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
宋海岩  李钢  王祥生 《化学进展》2010,22(4):573-579
本文综述了微孔材料和介孔材料负载型金催化剂的制备、表征与应用研究的最新进展,从多孔载体的选择(氧化物、微孔分子筛、介孔氧化物、介孔分子筛和介孔碳材料)、金的最新负载方法(沉积-沉淀法、溶胶-凝胶法、原位法/一步法和化学气相沉积法)与表征及其催化性能(一氧化碳低温氧化、氢气/氧气直接合成过氧化氢、直接合成环氧丙烷和有机物的选择性氧化)等方面详尽地评述了微孔材料和介孔材料负载型金催化剂研究概况。同时,提出了多孔材料负载金催化剂存在的一些问题,并展望了其研究和发展的方向。  相似文献   

2.
The preparation and catalytic activity of ferric oxide and its composite oxides supported gold catalysts for low-temperature CO oxidation were investigated detailedly, and characterized extensively by XRD, XPS, TPR, EC and XAFS techniques. It was found that containing highly dispersed Au of partially oxidized state, these nano-structured oxides supported Au/Fe2O3 and Au/NiFe2O4 catalysts had higher low-temperature activities. The possible catalytic active center is the gold of partially oxidized state (Auζ+).  相似文献   

3.
A series of cobalt catalysts supported on TiO2, SiO2, or a mixture of them, incorporated with some added oxides from Groups III, IV, and V of transition metals, were prepared using the incipient wetness impregnation method. For better evaluation of catalysts, the physicochemical properties of catalysts were investigated using brunauer-emmett-teller (BET), H2-TPR, NH3-TPD, X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy techniques. The performance of catalysts was studied in a fixed-bed reactor at 220°C, 24 bar, gas hourly space velocity (GHSV) of 2 L/h/gcat., and H2 to CO ratio of 2. The results indicate that CeO2 and ZrO2 as promoters can enhance the CO conversion and catalyst activity and enhance the selectivities of higher-molecular-weight products. On the contrary, the presence of V2O5 as a promoter undesirably suppressed CO conversion and, consequently, catalytic performance. The results show that the catalyst included CeO2, was supported on a binary mixture of SiO2 and TiO2, and has significant improved activity and C5+ selectivity. From the reactor test, values of 156.48 mmol COconv./gCo/h activity, and 0.17 gC3+/(h.gcat.) productivity have been obtained for this catalyst.  相似文献   

4.
The oxidation of CO in the presence of hydrogen (PROX process) was investigated on bimetallic Au-Rh catalysts at 300–373 K by Fourier transform infrared spectroscopy and mass spectroscopy. The effects of catalyst composition, reaction temperature and composition of the reacting gas mixtures have been studied. The IR studies revealed the formation of bi- and monodentate carbonates, bicarbonates and hydrocarbonates on the catalysts surfaces; these surface species proved to be not involved in the surface reactions. The formation of adsorbed formaldehyde was observed on all surfaces, except 1% (0.25Au+0.75Rh)/TiO2. Adsorbed CO2 (as the surface product of CO oxidation) was not detected on any surface. The presence of both O2 and H2 reduced the surface concentration of CO adsorbed on the metallic sites. Mass spectroscopic analysis of the gas phase showed that gaseous CO2 was formed in the highest amount in the CO+O2 mixture, the presence of H2 suppressed the amount of CO2 produced. This negative effect of H2 was the lowest on the 1% Rh/TiO2 and 1% (0.25Au+0.75Rh)/TiO2 catalysts.  相似文献   

5.
一氧化碳低温催化氧化   总被引:6,自引:0,他引:6  
一氧化碳 (CO) 催化氧化反应因在实际生活中应用广泛而受到人们普遍关注,如激光器中微量CO的消除、封闭体系中CO的消除、汽车尾气净化以及质子交换膜燃料电池中少量CO的消除等。本文总结了近年来CO低温催化氧化研究进展,包括催化剂及其制备方法、CO氧化反应机理以及不同环境气氛对催化剂CO低温氧化性能的影响。催化剂的制备方法主要包括传统浸渍法、共沉淀法、沉积-沉淀法、溶胶-凝胶法、离子交换法、化学气相沉积法、溶剂化金属原子浸渍法等。催化剂可分为贵金属催化剂、非贵金属催化剂、以分子筛为载体的催化剂和合金催化剂等。CO氧化反应机理方面的相关报道较多,人们针对不同催化剂体系提出了各种假设。不同环境气氛对催化剂CO低温氧化性能的影响主要分为H2O、CO2、H2和其它气氛等4部分进行描述。最后对该领域的发展前景进行了展望。  相似文献   

6.
We prepared Pd catalysts supported on various metal oxides, viz. γ-Al2O3, α-Al2O3, SiO2–Al2O3, SiO2, CeO2 and TiO2 by an incipient wetness method and applied them to propane combustion. Several techniques: N2 physisorption, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), CO chemisorption, temperature-programmed reduction (TPR) and temperature-programmed oxidation (TPO) were employed to characterize the catalysts. Pd/SiO2–Al2O3 showed the least catalytic activity at high temperatures among Pd catalysts supported on irreducible metal oxides, viz. SiO2, Al2O3 and SiO2–Al2O3. Pd/γ-Al2O3 was much superior for this reaction to Pd/α-Al2O3. The Pd catalyst supported on reducible metal oxides (CeO2 and TiO2) with a less specific surface area showed the higher catalytic activity compared with that supported on reducible metal oxides with a higher specific surface area, even though the former had a less Pd dispersion than the latter. In the case of Pd/SiO2–Al2O3, the initially reduced Pd catalyst was superior to the fully oxidized one. The oxidation of metallic Pd occurred in the presence of O2 with increasing reaction temperature, which resulted in the change in the catalytic activity.  相似文献   

7.
A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.  相似文献   

8.
Gold supported on titanium-based metal oxides can assist the selective partial oxidation of propylene at temperatures from 313 K to 573 K in a gas containing both H2 and O2. The preparation method was found to be crucial in controlling the selectivities. In general, impregnation and chemical vapor deposition methods do not produce selective catalysts. Only the deposition-precipitation method makes gold selective to propylene oxide or propanal, suggesting that a strong contact between the gold particles and the titanium ion sites on the support is important. The effect of changing the support was also dramatic; the use of the anatase form of TiO2 and Ti-MCM-41 results in propylene oxide production, while the rutile structure of TiO2 caused complete oxidation to CO2. Microporous crystalline titanium silicates such as TS-1, TS-2, and Ti-β zeolite make gold relatively selective to propanal and of the three TS-1 gives the highest selectivity. These results indicate that the oxidation of propylene in the copresence of H2 must involve the surface of the supports and that the reaction takes place at the interface perimeter around the gold particles.  相似文献   

9.
Activated carbon (AC) supported silver catalysts were prepared by incipient wetness impregnation method and their catalytic performance for CO preferential oxidation (PROX) in excess H2 was evaluated. Ag/AC catalysts, after reduction in H2 at low temperatures (≤200 °C) following heat treatment in He at 200 °C (He200H200), exhibited the best catalytic properties. Temperature-programmed desorption (TPD), X-ray diffraction (XRD) and temperature-programmed reduction (TPR) results indicated that silver oxides were produced during heat treatment in He at 200 °C which were reduced to metal silver nanoparticles in H2 at low temperatures (≤200 °C), simultaneously generating the adsorbed water/OH. CO conversion was enhanced 40% after water treatment following heat treatment in He at 600 °C. These results imply that the metal silver nanoparticles are the active species and the adsorbed water/OH has noticeable promotion effects on CO oxidation. However, the promotion effect is still limited compared to gold catalysts under the similar conditions, which may be the reason of low selectivity to CO oxidation in PROX over silver catalysts. The reported Ag/AC-S-He catalyst after He200H200 treatment displayed similar PROX of CO reaction properties to Ag/SiO2. This means that Ag/AC catalyst is also an efficient low-temperature CO oxidation catalyst.  相似文献   

10.
The partial oxidation of methane to syngas is studied in the presence of Pt- and Ni-containing catalysts. The process kinetics does not provide unequivocal information on the order of formation of products (including carbon oxides) when either methane–oxygen or methane–oxygen–CO2 mixtures are used. Experiments with 13C-labeled carbon dioxide added show the difference in the behavior of the catalysts. In the presence of Pt/ZrO2, there is no noticeable transfer of the isotopic label to the CO molecules. On the nickel catalyst, 13CO is formed in substantial amounts, which can probably be explained by the redox reaction of 13CO2 with metallic nickel under oxygen-free conditions behind the zone of the main reaction of methane oxidation.  相似文献   

11.
Global warming, fossil fuel depletion and fuel price increases have motivated scientists to search for methods for the storage and reduction of the amount of greenhouse gases, especially CO2. The hydrogenation process has been introduced as an emerging method of CO2 capture and convertion into value-added products. In this study, new types of catalysts are introduced for CO2 hydrogenation and are compared based on catalytic activity and product selectivity. The physical properties of the samples are specified using BET. Iron catalysts supported on γ-Al2O3 with different metal promoters (X = Ni, K, Mn, Cu) are prepared through the impregnation method. Moreover, Fe–Ni catalysts supported on HZSM5-Al2O3 and Ce–Al2O3 are synthesized. Samples are reduced by pure H2 and involved in hydrogenation reaction in a fixed bed reactor (H2/CO2 = 3, total pressure = 10 MPa, temperature = 523 K, GHSV = 2000, 1250 nml/min). All catalysts provide high conversion in hydrogenation reactions and the results illustrate that the selectivity of light hydrocarbons is higher than that of methane and CO. It is found that Ni has a promoting effect on the conversion fluctuations throughout the reaction with 66.13% conversion. Using combined supported catalysts leads to enhancing catalytic performance. When Fe–Ni/γ–Al2O3—HZSM5 is utilized, CO2 conversion is 81.66% and the stability of the Fe–Ni catalyst supported on Al2O3 and Ce–Al2O3 furthey improves.  相似文献   

12.
Structure and Catalytic Properties of Molybdenum Oxide Supported Catalysts in Some Oxidation Reactions Molybdenum supported catalysts were prepared by using different precursor compounds such as Mo(π-C3H5)4, [Mo(OC2H5)5]2, MoCl5, (NH4)6Mo7O24, and their catalytic behaviour in some oxidation reactions was studied. During the preparation process, as a result of interaction between the molybdenum compound used and the support, different surface compounds with strongly differing catalytic properties have been formed. MoO3 and supported catalysts with MoO3 crystallites on the surface, catalyse the H2 oxidation at temperatures above 400°C and the CO oxidation at temperatures of about 500°C. The reaction proceeds according to a redox mechanism. On surface compounds of molybdenum which exist on the surface if organic complexes are used as precursors, the catalytic H2 oxidation occurs even at 100°C with a high reaction rate. The catalytic CO oxidation on these catalysts occurs at temperatures of about 300°C. An associative mechanism on coordinative unsaturated MoVI sites is discussed.  相似文献   

13.
The catalysts of silver supported on mesoporous silica modified with Co3O4, CeO2, and ZrO2 were prepared by an impregnation method; characterized by X-ray diffraction analysis, temperature-programmed reduction, and low-temperature nitrogen adsorption; and studied in a model reaction of CO oxidation. It was found that the Ag/SiO2 system exhibited high activity in the reaction of CO oxidation, and the addition of transition metal oxides led to reduction of the temperature of 50% CO conversion by 40°C. The modification of Ag/SiO2 with cerium dioxide was found most effective because of the interaction of silver particles and CeO2 on the surface of silica gel.  相似文献   

14.
Selective oxidation of CO that is in mixtures enriched in H2 was studied to investigate catalytic properties of the 0.5—80% CuO/Ce0.7Zr0.3O2 system. The catalysts were prepared by the combined decomposition of copper, cerium, and zirconyl nitrates at 300 °C. The systems studied are active and stable under mild conditions of the process (80—160 °C) and at high space velocities (to 100000 h–1) of the reaction mixture (2% CO, 1% O2, 40—50% H2). With an increase in the CuO content in the catalysts up to 20%, the degree of CO removal achieves 60% (120 °C and V = 35000 h–1) and further does not change appreciably. The contribution of oxygen participation into CO oxidation is virtually independent of the copper concentration in the sample and ranges from 65 to 75%. The dependences of the Arrhenius equation parameters for CO and H2 oxidation on the catalyst composition were determined, which makes it possible to calculate the conversion of reactants and selectivity of CO conversion under the specified conditions of the process. The addition of CO2 and H2O (12—15%) to the reaction mixture decreases the catalyst activity and simultaneously increases the selectivity of CO oxidation to 100%. It is shown by the TPR and X-ray diffraction methods that the combined decomposition of the starting Cu2+, Ce3+, and ZrO2+ nitrates produces solid solutions of oxides with a high content of CuO. The reductive pre-treatment of fresh samples of the studied catalysts results in the destruction of the solid solution and formation of highly dispersed Cu particles on the surface of Ce—Zr—O. These particles are active in CO oxidation.  相似文献   

15.
The kinetics of the slow oxidation of CO in the presence of H2 have been studied above the second explosion limit for the mixture 2CO + O2 + X% H2 at the temperature range of 530–570°C, pressures from 300 to 530 torr, and hydrogen contents of 1.1, 2.8, and 5.7%. The second explosion limit has been experimentally determined for the mixture of 2CO + O2 containing 1.0, 3.0, and 5.7% H2. On the basis of the oxidation scheme of CO in the presence of H2, which includes the accepted mechanism of oxidation of hydrogen supplemented by the reactions in which CO takes part, the second explosion limit and the profiles of the slow reaction are calculated by computer methods. The agreement found between experimental and calculated values allows one to conclude that the scheme under consideration rather completely described the slow reaction above the second limit and the occurrence of the second explosion limit in the mixture CO–O2–H2. The rate constant for the reaction HO2 + CO → OH + CO2 was calculated from the experimental data and was found to agree with previous determinations.  相似文献   

16.
李庆远  季生福  胡金勇  蒋赛 《催化学报》2013,34(7):1462-1468
采用浸渍法制备了SiO2, γ-Al2O3, CaO和TiO2负载的Ni催化剂, 以及不同MgO含量的MgO-7.5%Ni/γ-Al2O3催化剂,利用X射线衍射和N2吸附-脱附技术表征了催化剂的结构,在固定床反应器上评价了它们在稻草水蒸气催化重整制合成气反应中的催化性能,考察了反应条件对催化剂性能的影响.结果表明, 以γ-Al2O3为载体时Ni催化剂活性最高,其中7.5%Ni/γ-Al2O3催化剂的H2收率可达1071.3ml/g,H2:CO的体积比为1.4:1;同时,MgO的添加进一步提高了该催化剂的性能,当MgO含量为1.0%时,H2收率可达1194.6ml/g,H2:CO体积比可达3.9:1.可见MgO的加入促进了Ni基催化剂上稻草水蒸气催化重整制合成气反应的进行,同时使得合成气中CO发生水-汽转换反应,从而大大提高了合成气中H2含量.  相似文献   

17.
我们研究了4种负载型Pt催化剂(1Pt/NiO、1Pt/FeOx、1Pt/Co3O4和Pt/CeO2)上不同反应条件下CO氧化活性及抗H2O和CO2性能.发现反应气氛中CO2的加入与CO形成了竞争吸附,并在催化剂表面形成了碳酸盐物种堵塞了活性位,从而导致催化剂失活.反应气氛中H2O的加入对1Pt/CeO2催化剂的活性有所抑制,但对1Pt/FeOx、1Pt/NiO和1Pt/Co3O4催化剂的活性却有促进作用.在1Pt/FeOx和1Pt/CeO2催化剂上的分步反应实验和动力学研究表明,尽管H2O的加入在两种催化剂上均与CO形成了竞争吸附,但在1Pt/FeOx催化剂上H2O在载体表面解离形成的羟基更易与CO反应,开辟了新的反应途径,从而提高了反应性能.此外,H2O的加入能有效分解该催化剂上的碳酸盐物种,从而保持了其稳定性.  相似文献   

18.
The oxidation of carbon monoxide (CO) has received more attention in the last two to three decades owing to its importance in different fields. To control this CO pollution, catalytic converters have been investigated. Different types of catalysts have been used in a catalytic converter for CO emission control purposes. Platinum (Pt)-based noble metal catalysts show great potential for CO oxidation in catalytic converters with high thermal stability and tailoring flexibility. Pt metal catalysts modified with promoters such as alkali metals and reducible metal oxides have received great attention for their superior catalytic activities in CO oxidation. Temperature, close environment of the catalyst, and chemical composition in the surface layer of the catalyst have a huge effect on the active phase dispersion and O2 adsorption capacity of the Pt metal catalysts. The main difference in activities of Pt metal catalyst for CO oxidation in O2 or H2 atmosphere has found. The addition of supports in Pt metal catalysts has improved their performances and reduced their cost. These improvement strongly depends on the surface structure, morphology, number of active sites, and various Pt-O interactions. Many research articles have already been published in CO oxidation over Pt metal catalysts, but no review article dedicated to CO oxidation is available in the literature.  相似文献   

19.
The screening of commercial nickel catalysts for methanation and a series of nickel catalysts supported on CeO2, γ-Al2O3, and ZrO2 in the reaction of selective CO methanation in the presence of CO2 in hydrogen-containing mixtures (1.5 vol % CO, 20 vol % CO2, 10 vol % H2O, and the balance H2) was performed at the flow rate WHSV = 26000 cm3 (g Cat)−1 h−1. It was found that commercial catalytic systems like NKM-2A and NKM-4A (NIAP-07-02) were insufficiently effective for the selective removal of CO to a level of <100 ppm. The most promising catalyst is 2 wt % Ni/CeO2. This catalyst decreased the concentration of CO from 1.5 vol % to 100 ppm in the presence of 20 vol % CO2 in the temperature range of 280–360°C at a selectivity of >40%, and it retained its activity even after contact with air. The minimum outlet CO concentration of 10 ppm at 80% selectivity on a 2 wt % Ni/CeO2 catalyst was reached at a temperature of 300°C.  相似文献   

20.
Iron oxide‐supported gold samples were prepared by co‐precipitation from HAuCl4 and Fe(NO3)3. The activities of the samples as CO oxidation catalysts were tested without thermal treatment and following treatments in flows of He and O2 at various temperatures. It was found that the untreated samples and those treated in a flow of He at 150 °C were more active than samples that had been treated at 400 °C in either a flow of O2 or of He. Infrared spectra recorded during CO oxidation catalysis indicate the presence of bonded CO molecules to cationic gold on all samples, whereas spectra of the least active catalysts indicate a predominant presence of Fe2+ carbonyls, which were highly stable under the conditions of our experiments. Our results indicate that in the least active samples the Fe2+‐bound CO blocks sites that would otherwise be available for oxygen activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号