首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optical sensor for the detection of caspase-9 activity in a single cell   总被引:1,自引:0,他引:1  
We demonstrate for the first time, the application and utility of a unique optical sensor having a nanoprobe for monitoring the onset of the mitochondrial pathway of apoptosis in a single living cell by detecting enzymatic activities of caspase-9. Minimally invasive analysis of single live MCF-7 cells for caspase-9 activity is demonstrated using the optical sensor which employs a modification of an immunochemical assay format for the immobilization of nonfluorescent enzyme substrate, Leucine-GlutamicAcid-Histidine-AsparticAcid-7-amino-4-methylcoumarin (LEHD-AMC). LEHD-AMC covalently attached on the nanoprobe tip of an optical sensor is cleaved during apoptosis by caspase-9 generating free AMC. An evanescent field is used to excite cleaved AMC and the resulting fluorescence signal is detected. By quantitatively monitoring the changes in fluorescence signals, caspase-9 activity within a single living MCF-7 cell was detected. By comparing of the fluorescence signals from apoptotic cells induced by photodynamic treatment and nonapoptotic cells, we successfully detected caspase-9 activity, which indicates the onset of apoptosis in the cells.  相似文献   

2.
Hargis AD  Alarie JP  Ramsey JM 《Electrophoresis》2011,32(22):3172-3179
A microfluidic device capable of rapidly analyzing cells in a high-throughput manner using electrical cell lysis is further characterized. In the experiments performed, cell lysis events were studied using an electron multiplying charge coupled device camera with high frame rate (>100 fps) data collection. It was found that, with this microfluidic design, the path that a cell follows through the electric field affects the amount of lysate injected into the analysis channel. Elimination of variable flow paths through the electric field was achieved by coating the analysis channel with a polyamine compound to reverse the electroosmotic flow (EOF). EOF reversal forced the cells to take the same path through the electric field. The improved control of the cell trajectory will reduce device-imposed bias on the analysis and maximizes the amount of lysate injected into the analysis channel for each cell, resulting in improved analyte detection capabilities.  相似文献   

3.
A novel miniaturized “stir-brush microextractor” was prepared using a zinc oxide/hydroxylated multiwalled carbon nanotubes (ZnO/MWCNTs–OH) coated stainless steel brush connected to a small dc motor. The synthesized zinc oxide on each strand of stainless steel had a flower-like nanostructure when observed by a scanning electron microscope (SEM). This structure produced a large surface area before it was coated with the hydroxylated multiwalled carbon nanotubes sorbent. Under optimal conditions, the developed device provided a good linearity for the extraction of carbofuran and carbaryl, in the range of 25–500 ng mL−1 and 50–500 ng mL−1, respectively, with low limits of detection of 17.5 ± 2.0 ng mL−1 and 13.0 ± 1.8 ng mL−1. It also provided a good stir-brush-to-stir-brush reproducibility (% relative standard deviation < 5.6%, n = 6). The device was applied for the extraction and preconcentration of carbamate pesticides in fruit and vegetable samples prior to analysis with a gas chromatograph coupled with a flame ionization detector (GC–FID). Carbofuran was found at 9.24 ± 0.93 ng g−1 and carbaryl was detected at 7.05 ± 0.61 ng g−1 with good recoveries in the range of 73.7 ± 10.0% to 108.4 ± 2.6% for carbofuran and 75.7 ± 10.0% to 111.7 ± 5.7% for carbaryl.  相似文献   

4.
A novel in-needle sample preparation device has been developed for the determination of volatile aldehydes in gaseous samples. The needle device is designed for the gas chromatographic (GC) analysis of aldehydes and ketones commonly found in typical in-house environments. In order to prepare the extraction device, a bundle of polymer-coated filaments was longitudinally packed into a specially designed needle. Derivatization reactions were prompted by 2,4-dinitrophenylhydrazine (NDPH) included in the needle, and so the aldehydes and ketones were derivatized to the corresponding hydrazones and extracted with the extraction needle. A reproducible extraction needle preparation process was established, along with a repeatable derivatization/extraction process that ensures the successful determination of aldehydes. The storage performance of the extraction needle was also evaluated at room temperature for three days. The results demonstrate the successful application of the fiber-packed extraction device to the preparation of a gaseous sample of aldehydes, and the future possibility of applying the extraction device to the analysis of in-house environments.  相似文献   

5.
Klepárník K  Horký M 《Electrophoresis》2003,24(21):3778-3783
The detection of doxorubicin-induced apoptosis in individual cardiomyocytes was performed on a microfluidic device. Microstructures integrated on a CD-like plastic disk were adapted for the selection of individual cells their lysis in an alkaline environment and the separation of released apoptotic DNA fragments. The fragments with typical 180 base pairs ladder pattern were electrophoretically resolved in a 2% solution of linear polyacrylamide with 0.1 M NaOH on a migration distance of 6 mm. The laser-induced fluorescence of fragments labeled by ethidium bromide was monitored by a photomultiplier tube mounted on a confocal microscope. The causal relation between the enhanced doxorubicin concentration and the extent of DNA fragmentation in a single cell was confirmed. The results show that the extent of DNA fragmentation is proportional to the time of a cell treatment. Onset of necrosis was evident in cardiomyocytes treated by doxorubicin for more than 24 h. The adverse effect of doxorubicin, an important cytostatics used for the treatment of many solid tumors, leads to the destruction of cardiomyocytes and, consequently, may result in the heart failure of treated individuals. Therefore, the monitoring of the extent of apoptotic DNA damage of cardiac myocytes represents critical step toward understanding of the development of chronic doxorubicin-induced cardiomyopathy.  相似文献   

6.
Khnouf R  Chapman BD  Fan ZH 《Electrophoresis》2011,32(22):3101-3107
Cell-free protein synthesis (CFPS) is an attractive alternative to cell-based protein expression systems because of its advantages including speed, simplicity, and adaptability to various formats. However, two major obstacles exist that have been preventing it from being widely used. One is high cost and the other is low protein synthesis yield. We report here a miniaturized CFPS device that addresses these challenges. The cost saving was achieved by miniaturization, which reduced the reagent consumption by two orders of magnitude. The protein synthesis yield was enhanced by prolonging CFPS reactions through continuous supply of reactants (e.g. nutrients and energy components). The reactants were contained in a feeding solution, which was replenished through a nanoporous membrane and microchannel. The design of the miniaturized device was optimized by running continuous-exchange CFPS in devices with a variation in the type of membrane, the size of the exchange interface, and the volume ratio of the reaction solution to the feeding solution. The effects of these design variations on the protein synthesis yield have been studied. Furthermore, the design was expanded into a 96-unit device that can produce a large number of proteins simultaneously, enabling high-throughput proteomics applications.  相似文献   

7.
This paper presents a novel method to embed, anchor, and cultivate cells in a controlled 3-D flow-through microenvironment. This is realized using an etched silicon pillar flow chamber filled with extracellular matrix (ECM) gel mixed with cells. At 4 degrees C, while in liquid form, ECM gel is mixed with cells and injected into the chamber. Raising the temperature to 37 degrees C results in a gel, with cells embedded. The silicon pillars both stabilize and increase the surface to volume ratio of the gel. During polymerization the gel shrinks, thus creating channels, which enables perfusion through the chip. The pillars increase the mechanical stability of the gel permitting high surface flow rates without surface modifications. Within the structure cells were still viable and proliferating after 6 days of cultivation. Our method thus makes it possible to perform medium- to long-term cultivation of cells in a controlled 3-D environment. This concept opens possibilities to perform studies of cells in a more physiological environment compared to traditional 2-D cultures on flat substrates.  相似文献   

8.
Tan A  Pashkova A  Zang L  Foret F  Karger BL 《Electrophoresis》2002,23(20):3599-3607
A miniaturized multichamber device was constructed for solution isoelectric focusing (IEF) separation of complex peptide mixtures. The system, based on immobilized pH gels, consisted of 96 minichambers ( approximately 75 nuL each) arranged in eight rows. Neighboring chambers in a given row were separated by short glass tubes (4 mm inner diameter, 3 mm long), within which Immobiline gels of specific pH values were polymerized. During focusing, the device was sandwiched between two supporting blocks incorporating the reservoirs for anolyte and catholyte. In principle, multiple samples could be simultaneously fractionated, each separated into 12 fractions of various pI ranges. A variety of standard peptide mixtures and tryptic digests of proteins were separated by IEF using this device, and the fractions were characterized by mass spectrometry. For a codigested nine-protein mixture, both the total number of peptides identified and the average sequence coverage were similar to the results of ion-exchange chromatography (IEC), according to matrix assisted laser/desorption/ionization--time of flight (MALDI-TOF) data. The IEF separation provided concentrated and desalted fractions, suitable for an additional separation liquid chromatography, capillary electrophoresis (LC, CE) or mass spectrometry (MS) detection without additional sample cleanup. High loading capacity was achieved for the miniaturized multichamber IEF device. Importantly, a linear correlation was found between the experimentally determined and calculated pI values of peptides.  相似文献   

9.
A microfluidic approach for rapid bioluminescent real-time detection of single nucleotide polymorphism (SNP) is presented. The method is based on single-step primer extension using pyrosequencing chemistry to monitor nucleotide incorporations in real-time. The method takes advantage of the fact that the reaction kinetics differ between matched and mismatched primer-template configurations. We show here that monitoring the initial reaction in real time accurately scores SNPs by comparing the initial reaction kinetics between matched and mismatched configurations. Thus, no additional treatment is required to improve the sequence specificity of the extension, which has been the case for many allele-specific extension assays. The microfluidic approach was evaluated using four SNPs. Three of the SNPs included primer-template configurations that have been previously reported to be difficult to resolve by allele-specific primer extension. All SNPs investigated were successfully scored. Using the microfluidic device, the volume for the bioluminescent assay was reduced dramatically, thus offering a cost-effective and fast SNP analysis method.  相似文献   

10.
Li G  Ran R  Zhao JL  Xu YS 《Electrophoresis》2007,28(24):4661-4667
Fraction collection following electrophoresis has many applications in biology analysis. These assays typically need to identify specific fractions in the separated sample for further processing and require extraction of one or a group of fragments. Unfortunately, the conventional methods involve cumbersome procedures and are not amenable to integration, automation, and extraction of microscale samples. In this work, we present a scheme of chip-based electroelution for the extraction of DNA fragments, which allows the isolation and collection of target DNA fragments in a single device. Both theoretical analysis and experimental results have shown that there are some cross-contaminations from adjacent bands and a little loss of DNA recovery during target DNA extraction with the prototype miniaturized device. In order to improve the purity and yield of the extracted DNA fragment, an optimal channel configuration for DNA recovery miniaturized device was proposed. The simulations and the experimental results are in good agreement and confirm that with the optimized device design a high-efficiency DNA extraction is achieved.  相似文献   

11.
We demonstrate a concept for how a miniaturized 3-D cell culture in biological extracellular matrix (ECM) or synthetic gels bridges the gap between organ-tissue culture and traditional 2-D cultures. A microfluidic device for 3-D cell culture including microgradient environments has been designed, fabricated, and successfully evaluated. In the presented system stable diffusion gradients can be generated by application of two parallel fluid flows with different composition against opposite sides of a gel plug with embedded cells. Culture for up to two weeks was performed showing cells still viable and proliferating. The cell tracer dye calcein was used to verify gradient formation as the fluorescence intensity in exposed cells was proportional to the position in the chamber. Cellular response to an applied stimulus was demonstrated by use of an adenosine triphosphate gradient where the onset of a stimulated intracellular calcium release also depended on cell position.  相似文献   

12.
The ability to accurately control fluid transport in microfluidic devices is key for developing high‐throughput methods for single cell analysis. Making small, reproducible changes to flow rates, however, to optimize lysis and injection using pumps external to the microfluidic device are challenging and time‐consuming. To improve the throughput and increase the number of cells analyzed, we have integrated previously reported micropumps into a microfluidic device that can increase the cell analysis rate to ∼1000 cells/h and operate for over an hour continuously. In order to increase the flow rates sufficiently to handle cells at a higher throughput, three sets of pumps were multiplexed. These pumps are simple, low‐cost, durable, easy to fabricate, and biocompatible. They provide precise control of the flow rate up to 9.2 nL/s. These devices were used to automatically transport, lyse, and electrophoretically separate T‐Lymphocyte cells loaded with Oregon green and 6‐carboxyfluorescein. Peak overlap statistics predicted the number of fully resolved single‐cell electropherograms seen. In addition, there was no change in the average fluorescent dye peak areas indicating that the cells remained intact and the dyes did not leak out of the cells over the 1 h analysis time. The cell lysate peak area distribution followed that expected of an asynchronous steady‐state population of immortalized cells.  相似文献   

13.
Assays toward single‐cell analysis have attracted the attention in biological and biomedical researches to reveal cellular mechanisms as well as heterogeneity. Yet nowadays microfluidic devices for single‐cell analysis have several drawbacks: some would cause cell damage due to the hydraulic forces directly acting on cells, while others could not implement biological assays since they could not immobilize cells while manipulating the reagents at the same time. In this work, we presented a two‐layer pneumatic valve‐based platform to implement cell immobilization and treatment on‐chip simultaneously, and cells after treatment could be collected non‐destructively for further analysis. Target cells could be encapsulated in sodium alginate droplets which solidified into hydrogel when reacted with Ca2+. The size of hydrogel beads could be precisely controlled by modulating flow rates of continuous/disperse phases. While regulating fluid resistance between the main channel and passages by the integrated pneumatic valves, on‐chip capture and release of hydrogel beads was implemented. As a proof of concept for on‐chip single‐cell treatments, we showed cellular live/dead staining based on our devices. This method would have potential in single cell manipulation for biochemical cellular assays.  相似文献   

14.
We report the first example of an H2/O2 enzymatic fuel cell able to power a wireless transmission system. Oxygen-tolerant hydrogenase from Aquifex aeolicus and bilirubin oxidase from Myrothecium verrucaria were incorporated from diluted solutions in carbon felt-based material, allowing mediatorless catalytic currents more than 1 mA to be reached. The enzymatic fuel cell open circuit voltage was 1.12 V, and short circuit current was 767 μA. It delivered a maximum power of 410 μW, sufficient to power the electronic device that measured in real time the anodic/cathodic compartments and room temperatures, the voltage of the capacitor and voltage output of the enzymatic fuel cell itself. Notably, data were sent every 25 s during 7 hours of continuous operation which constitute the highest performances ever reported for a realistic environmental application fully powered with an enzymatic fuel cell.  相似文献   

15.
Chen J  Zheng Y  Tan Q  Shojaei-Baghini E  Zhang YL  Li J  Prasad P  You L  Wu XY  Sun Y 《Lab on a chip》2011,11(18):3174-3181
This paper presents a microfluidic system for cell type classification using mechanical and electrical measurements on single cells. Cells are aspirated continuously through a constriction channel with cell elongations and impedance profiles measured simultaneously. The cell transit time through the constriction channel and the impedance amplitude ratio are quantified as cell's mechanical and electrical property indicators. The microfluidic device and measurement system were used to characterize osteoblasts (n=206) and osteocytes (n=217), revealing that osteoblasts, compared with osteocytes, have a larger cell elongation length (64.51 ± 14.98 μm vs. 39.78 ± 7.16 μm), a longer transit time (1.84 ± 1.48 s vs. 0.94 ± 1.07 s), and a higher impedance amplitude ratio (1.198 ± 0.071 vs. 1.099 ± 0.038). Pattern recognition using the neural network was applied to cell type classification, resulting in classification success rates of 69.8% (transit time alone), 85.3% (impedance amplitude ratio alone), and 93.7% (both transit time and impedance amplitude ratio as input to neural network) for osteoblasts and osteocytes. The system was also applied to test EMT6 (n=747) and EMT6/AR1.0 cells (n=770, EMT6 treated by doxorubicin) that have a comparable size distribution (cell elongation length: 51.47 ± 11.33 μm vs. 50.09 ± 9.70 μm). The effects of cell size on transit time and impedance amplitude ratio were investigated. Cell classification success rates were 51.3% (cell elongation alone), 57.5% (transit time alone), 59.6% (impedance amplitude ratio alone), and 70.2% (both transit time and impedance amplitude ratio). These preliminary results suggest that biomechanical and bioelectrical parameters, when used in combination, could provide a higher cell classification success rate than using electrical or mechanical parameter alone.  相似文献   

16.
For immediate discrimination among isolated cells we propose a novel device and technique for isolation of cells and sequential detection of specific gene(s) within them by polymerase chain reaction (PCR). In this study, we isolated Salmonella enterica cells and detected the Salmonella-specific invA gene from isolated cells by PCR on a compact disk (CD)-shaped device. This device enabled liquid flow by centrifugal force without a micro pump, and was fabricated from silicon wafer and glass to avoid evaporation of a small amount of reagent. One device has 24 microchannels, and 313 microchambers integrated on each microchannel. One microliter of PCR mixture containing cells was separated into microchambers on the device at 5000 rpm for 30 s. Each microchamber contained approximately 1.5 nL PCR mixture. A Poisson distribution of S. enterica cells was observed for different densities of cell suspension. At 200 cells μL?1 of S. enterica or less, isolated single cells could be determined on the device by amplification of DNA of the invA gene; at 400 cells μL?1, chambers containing no, one, two, or three cells could be determined on the device. Selective detection of S. enterica was achieved by PCR from a mixture of S. enterica and Esherichia coli on the CD-shaped device.  相似文献   

17.
Eyer K  Kuhn P  Hanke C  Dittrich PS 《Lab on a chip》2012,12(4):765-772
We present a microfluidic device that enables the determination of intracellular biomolecules in multiple single cells. The cells are individually trapped and isolated in a microchamber array. Since the microchambers can be opened and closed reversibly, the cells can be exposed to different solutions sequentially, e.g. for incubation, washing steps, labelling and finally, for lysis. The tightly sealed microchambers enable the retention and analysis of cell lysate derived from single cells. The performance of the device is demonstrated by monitoring the levels of the cofactors NADPH and NADH both in healthy mammalian cells and in cells exposed to oxidative stress. The platform was also used to determine the toxic impact of the alkaloid camptothecin on the intracellular enzyme glucose-6-phosphate dehydrogenase levels. In general, the device is applicable for the analysis of cell auto-stimulation and the detection of intracellular metabolite concentration or expression levels of proteins.  相似文献   

18.
A procedure for an all-plastic electrochemical cell comprising miniaturized planar indicator and reference electrodes is described. All electrodes are based on conducting polymers, are fully integrated, and contain no internal electrolyte. The reference microsensors were deposited via electrochemical polymerization from a water solution containing the monomer 3,4-ethylenedioxythiophene (EDOT) or 1-methylpyrrole (MPy) and a biochemical buffer 3-(N-morpholino) propanesulfonic acid [MOPS], 2-(N-morpholino) ethanesulfonic acid [MES], or 2-hydroxy-5-sulfobenzoic acid [SSA]). Ion-sensitive microelectrodes were prepared by the deposition of the ion-sensitive membrane solution (Ca2+, K+, and Cl) directly onto the mediating poly-EDOT (PEDOT), PEDOT–SSA, PEDOT–MES, PEDOT–MOPS, or poly-MPy–MOPS layers.  相似文献   

19.
《中国化学快报》2023,34(3):107522
Angiotensin-converting enzyme 2 (ACE2) is not only an enzyme but also a functional receptor on cell membrane for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, the activity of ACE2 in single living cell is firstly determined using a nanokit coupled electrospray ionization mass spectrometry (nanokit-ESI-MS). Upon the insertion of a micro-capillary into the living hACE2-CHO cell and the electrochemical sorting of the cytosol, the target ACE2 enzyme hydrolyses angiotensin II inside the capillary to generate angiotensin 1–7. After the electrospray of the mixture at the tip of the capillary, the product is differentiated from the substrate in molecular weight to achieve the detection of ACE2 activity in single cells. The further measurement illustrates that the inflammatory state of cells does not lead to the significant change of ACE2 catalytic activity, which elucidates the relationship between intracellular ACE2 activity and inflammation at single cell level. The established strategy will provide a specific analytical method for further studying the role of ACE2 in the process of virus infection, and extend the application of nanokit based single cell analysis.  相似文献   

20.
There is great interest in genetic modification of bone marrow-derived mesenchymal stem cells (MSC), not only for research purposes but also for use in (autologous) patient-derived-patient-used transplantations. A major drawback of bulk methods for genetic modifications of (stem) cells, like bulk-electroporation, is its limited yield of DNA transfection (typically then 10%). This is even more limited when cells are present at very low numbers, as is the case for stem cells. Here we present an alternative technology to transfect cells with high efficiency (>75%), based on single cell electroporation in a microfluidic device. In a first experiment we show that we can successfully transport propidium iodide (PI) into single mouse myoblastic C2C12 cells. Subsequently, we show the use of this microfluidic device to perform successful electroporation of single mouse myoblastic C2C12 cells and single human MSC with vector DNA encoding a green fluorescent-erk1 fusion protein (EGFP-ERK1 (MAPK3)). Finally, we performed electroporation in combination with live imaging of protein expression and dynamics in response to extracellular stimuli, by fibroblast growth factor (FGF-2). We observed nuclear translocation of EGFP-ERK1 in both cell types within 15 min after FGF-2 stimulation. Due to the successful and promising results, we predict that microfluidic devices can be used for highly efficient small-scale 'genetic modification' of cells, and biological experimentation, offering possibilities to study cellular processes at the single cell level. Future applications might be small-scale production of cells for therapeutic application under controlled conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号