首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diagnosis of Helicobacter pylori (H. pylori) infection by GC-MS detection of the (13)CO(2) enrichment in (13)C-urea breath test ((13)C-UBT) samples is reported. This study aimed to optimize the (13)C-UBT with regards to the diagnostic cut-off value, sampling time, and frequency. The H. pylori status of 103 dyspeptic patients was obtained by histological examination, the rapid urease test as well as with the GC-MS (13)C-UBT. Analytical and diagnostic accuracies were determined by comparison of the GC-MS (13)C-UBT results with that of the analytical and diagnostic gold standards, namely GC-isotope ratio MS (IRMS) and histology. The (13)CO(2) enrichment values obtained with GC-MS analysis, correlated favorably (r(2) = 0.993) with those obtained by GC-IRMS analysis. When compared to histology, the GC-MS (13)C-UBT had a diagnostic sensitivity of 92% and a specificity of 93%. The positive predictive value (PPV), negative predictive value (NPV), and accuracy were 95, 89, and 92%, respectively. It was concluded that SIM GC-MS is capable of analyzing nonradioactive (13)C-UBT samples, with a precision and accuracy sufficient to distinguish between H. pylori positive and negative patients.  相似文献   

2.
3.
Mouse sepsis models are used to gain insight into the complex processes involved with patients suffering from glucose metabolism disorders. Measuring the expiratory release of 13CO2 after administering stable labeled 13C6-glucose enables assessment of the in vivo integrity and functionality of key metabolic processes. In the present study, we demonstrate that Fourier transform infrared spectroscopy operating in the mid-infrared spectral regime (2–20 μm) combined with hollow waveguide gas sensing modules simultaneously serving as a miniaturized gas cell and as a waveguide are capable of quantitatively monitoring 13CO2 enrichment levels in low volume mouse breath samples.  相似文献   

4.
The natural abundance of carbon‐13 in blood proteins increases during the cachectic state and may be a biomarker for disease status. We hypothesized a corresponding drop in the relative abundance of 13C in breath CO2. Using the lipopolysacchride (LPS)‐induced endotoxemia model of the acute cachectic state, we demonstrated that the acute phase response causes shifts in the stable isotopes of carbon in exhaled CO2 (13CO2/12CO2 delta value) shortly after administration of LPS while glucocorticoid treatment does not. Mice were injected with LPS and stable isotopes of blood amino acids and carbon in exhaled CO2 were monitored. An increase in the relative isotopic mass of serum alanine, proline and threonine was observed at 3 h after LPS injection. Breath delta values began dropping immediately after administration of LPS, and were 4–5 delta values lower than those of the control animals by 2.5 h after injection. A corresponding drop in delta value was not observed with dexamethasone treatment. Thus protein synthesis during the acute phase response probably caused the fractionation of stable isotopes observed in the plasma amino acids and in exhaled breath 13CO2 delta values. The exhaled breath 13CO2 delta value may be a valuable real‐time biomarker of cachexia associated with an acute phase response due to endotoxemia. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Knowledge of carbon isotope fractionation is needed in order to discuss the formation and dissociation of naturally occurring CO2 hydrates. We investigated carbon isotope fractionation during CO2 hydrate formation and measured the three-phase equilibria of 12CO2–H2O and 13CO2–H2O systems. From a crystal structure viewpoint, the difference in the Raman spectra of hydrate-bound 12CO2 and 13CO2 was revealed, although their unit cell size was similar. The δ13C of hydrate-bound CO2 was lower than that of the residual CO2 (1.0–1.5‰) in a formation temperature ranging between 226 K and 278 K. The results show that the small difference between equilibrium pressures of ~0.01 MPa in 12CO2 and 13CO2 hydrates causes carbon isotope fractionation of ~1‰. However, the difference between equilibrium pressures in the 12CO2–H2O and 13CO2–H2O systems was smaller than the standard uncertainties of measurement; more accurate pressure measurement is required for quantitative discussion.  相似文献   

7.
Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios   总被引:3,自引:0,他引:3  
The CO methanation reaction over nickel was studied at low CO concentrations and at hydrogen pressures slightly above ambient pressure. The kinetics of this reaction is well described by a first-order expression with CO dissociation at the nickel surface as the rate-determining step. At very low CO concentrations, adsorption of CO molecules and H atoms compete for the sites at the surface, whereas the coverage of CO is close to unity at higher CO pressures. The ratio of the equilibrium constants for CO and H atom adsorption, K(CO)/K(H), was obtained from the rate of CO methanation at various CO concentrations. K(H) was determined independently from temperature programmed adsorption/desorption of hydrogen to be K(H) = 7.7 x 10(-4) (bar(-0.5)) exp[43 (kJ/mol)/RT] and hence the equilibrium constants for adsorption of CO molecules may be calculated to be K(CO) = 3 x 10(-7) (bar(-1)) exp[122 (kJ/mol)/RT]. Furthermore, the rate of dissociation of CO at the catalyst surface was determined to be 5 x 10(9) (s(-1)) exp[-96.7 (kJ/mol)/RT] assuming that 5% of the surface nickel atoms are active for CO dissociation. The results are compared to equilibrium and rate constants reported in the literature.  相似文献   

8.
In our developing world, carbon dioxide has become one of the most abundant greenhouse gases in the atmosphere. It is a stable, inert, small molecule that continues to present significant challenges toward its chemical activation as a useful carbon end product. This tutorial review describes one approach to the reduction of carbon dioxide to carbon fuels, using cobalt and nickel molecular catalysts, with particular focus on studying the thermodynamics and kinetics of CO(2) binding to metal catalytic sites.  相似文献   

9.
This article describes a dynamic model for formation and stability of CO2-hydrate on the interface of liquid CO2(LCO2) and ocean water at large depths. Experimental results indicate that a thin film of hydrate naturally forms on the interfaces between LCO2 and water, and inhibits diffusion between the two phases. Experiments further shows that the flux of CO2 through the hydrate film is dependent of the CO2-concentration in the ambient sea water. The model proposed here explains these phenomena by introducing four major mechanisms; diffusion of water to the LCO2-phase, formation of hydrate in the LCO2-hydrate interface, decay of hydrate in the water-hydrate interface, and diffusion of CO2 through the water phase. The model explains the CO2 flux not by diffusion through the hydrate film, but suggest a mechanism of continuous hydrate formation and decay. The overall effect is a “moving,” pseudo-steady-state hydrate film due to transport of CO2 through the film. The film velocity is dependent of liquid-liquid diffusivity parameters and reaction constant, and lacking experimental values of these parameters, an order–of-magnitude analysis is done by fitting the model to experimentally obtained data for the overall film velocity. The motivation for this work is to elucidate options for CO2 depositions in deep oceans, of which liquid CO2 sequestration is believed to be one of the most feasible. Spreading of CO2 from a liquid CO2-lake and associated lowering of pH in the ecosystem surrounding the lake is of large concern. The work presented here concludes that diffusion of CO2 in the ocean is largely reduced by the hydrate film and suggests that hydrate formation may alleviate some of the environmental concerns regarding deep ocean sequestration of liquid CO2. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
11.
12.
13.
Band structures in the region of strong infrared absorption bands for different N2O-12CO2 and 12CO2-13CO2 composite particles are investigated by combining quantum mechanical exciton calculations with systematic experimental investigations. The ice particles are generated by collisional cooling and characterized with rapid-scan infrared spectroscopy. The size of the particles lies between approximately 10 and 100 nm. The calculated spectra show excellent agreement with the experimental data. This work leads to a detailed understanding on a molecular level of shape effects in pure and statistically mixed particles as well as of the characteristic features observed for core-shell particles.  相似文献   

14.
15.
16.
Ga2O3 samples with different crystalline structures were prepared by calcination of a gallium nitrate powder around 800 K. Ga2O3 samples with mixed phases of γ and β showed high photocatalytic activity for CO production from CO2 reduction with water, and the activity was even higher than that for an Ag-loaded β-Ga2O3. The photocatalytic activity increased with time. The increase was attributed to the appearance of GaOOH resulting from the interaction of Ga2O3 with water during the reaction as revealed by XRD and XPS analyses. In situ FT-IR measurements revealed that bicarbonates and bidentate carbonate species were adsorbed on GaOOH. Therefore, the increase of the photocatalytic activity with time would be derived from the formation of GaOOH phase on the γ-Ga2O3 and β-Ga2O3 sample.  相似文献   

17.
We present an ab initio density functional theory study of the binding behavior of CO and O(2) molecules to two- and three-dimensional isomers of Au(13) in order to investigate the potential catalytic activity of this cluster towards low-temperature CO oxidation. First, we scanned the potential energy surface of Au(13) and studied the effect of spin-orbit coupling on the relative stabilities of the 21 isomers we identified. While spin-orbit coupling increases the stability of the three-dimensional more than the two-dimensional isomers, the ground state structure at 0 K remains planar. Second, we systematically studied the binding of CO and O(2) molecules onto the planar and three-dimensional structures lowest in energy. We find that the isomer dimensionality has little effect on the binding of CO to Au(13). O(2), on the other hand, binds significantly to the three-dimensional isomer only. The simultaneous binding of multiple CO molecules decreases the binding energy per molecule. Still, the CO binding remains stronger than the O(2) binding. We did not find a synergetic effect due to the co-adsorption of both molecular species. On the three-dimensional isomer, we find O(2) dissociation to be exothermic with an dissociation barrier of 1.44 eV.  相似文献   

18.
19.
Data for the adsorption of CO2 on 5A (CaA) and 13X (NaX) zeolite are critically evaluated. In addition, fresh data for the adsorption of CO2 on 13X zeolite is reported. Three intrinsic properties are examined: q max , the saturation loading, K H , the Henry constant, and (?ΔH) q , the isosteric heat of sorption. Below a reduced temperature T r , of 0.9, the q max values for both 5A and 13X zeolites are similar to theoretical values that may be derived using zeolitic crystallographic properties and the sorbate density calculated using the Rackett equation. For the region 0.9 ≤ Tr ≤ 1.0, the calculated q max values exceed the theoretical values similarly calculated, indicating that the molecules have a smaller molar volume than in a similar liquid phase. This is a similar result to that observed in ionic liquids. Linear regressed equations are derived for q max for the region 0.9 ≤ Tr ≤ 1.25. The Henry constant values for 5A are remarkably consistent for the five studies examined, with a correlation coefficient, R, of 0.999 for the van’t Hoff equation, but for the seven studies examined in 13X the data is more disperse as indicated by a correlation coefficient R of 0.899 for the van’t Hoff equation. The values of (?ΔH) q , the isosteric heat of sorption are in agreement with the literature. An explanation is advanced for the discrepancy between the higher heats of sorption values obtained calorimetrically from those obtained from isosteric adsorption studies. Finally, the fresh data is observed to fit the Toth model with regression coefficients of 0.999. However, the parameters obtained for the Toth equation by regression are significantly different from the intrinsic properties derived earlier, indicating the difficulty of deriving intrinsic parameters from isotherm fits.  相似文献   

20.
The adsorption dynamics and kinetics of CO2 on FeOx clusters have been studied using thermal desorption spectroscopy (TDS) and molecular beam scattering. According to AES data, even at good vacuum conditions, the vapor‐deposited Fe clusters oxidize readily. An ensemble of metallic and oxidized Fe clusters form. Three structures at 120 K, 160 K, and 500 K are seen in CO2 TDS, which are assigned to physisorbed CO2 and carbonate decomposition. The latter structure is only present for large Fe exposures, χFe. The initial adsorption probabilities, S0, decrease with increasing impact energy. S0 increases with adsorption temperature, Ts, which is discussed in the framework of the capture‐zone model (CZM). Small effects of the cluster size on the initial adsorption probabilities, S0, as well as its coverage dependence, S(Θ), have been seen. The coverage dependence of the adsorption probabilities obeys the Kisliuk precursor model, as predicted by the CZM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号