首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two small series of cationic gemini surfactants with dodecyl tails have been synthesized and evaluated with respect to self-assembly in bulk water and at different solid surfaces. The first series contained a flexible alkane spacer and is denoted 12-n-12, with n = 2, 4, and 6. The second series had a phenylene group connected to the quaternary nitrogens in either the meta or para position and the surfactants are referred to as 12-m-Φ-12 and 12-p-Φ-12, respectively. The phenylene group is a rigid linker unit. The critical micelle concentration (cmc) was determined both by tensiometry and by conductometry, and the packing density of the surfactants at the air-water interface was calculated from the Gibbs equation. The cmc values for the geminis with a rigid spacer, 12-m-Φ-12 and 12-p-Φ-12, were of the same order of magnitude as for 12-4-12, which is the flexible surfactant that most closely matches the phenylene-based surfactants with respect to hydrophobicity, measured as log P, and distance between the positively charged nitrogen atoms. The adsorption of flexible and rigid surfactants was investigated on gold, silicon dioxide (silica), gold made hydrophobic by the self-assembly of hexadecanethiol, and gold made hydrophilic by the self-assembly of 16-hydroxyhexadecanethiol. On all of the surfaces, there was a reverse relationship between the adsorbed amount at the cmc and the length of the spacer (i.e., 12-2-12 gave the highest and 12-6-12 gave the lowest amount of adsorbed material). The adsorption pattern was similar for all of the surfactants when recorded at 25 °C. Thus, one can conclude that a rigid spacer does not render the self-assembly of a gemini surfactant difficult, neither in bulk water nor at solid surfaces. However, on one of the surfaces-untreated gold-the adsorbed amount of the geminis with a rigid spacer at 40 °C was approximately twice the values obtained at 25 °C. This is interpreted as the formation of an interdigitated bilayer at 25 °C and a regular bilayer without interpenetration of the alkyl chains at 40 °C.  相似文献   

2.
The quartz crystal microbalance with dissipation monitoring (QCM-D) is an excellent method for studying the creation of DNA-based surfaces and films. Previous studies have used QCM-D to focus on the construction of DNA surfaces composed of short synthetic DNA oligomers or plasmid DNA. Here, we have used QCM-D to monitor the creation of genomic single- and double-stranded calf thymus DNA surfaces on a polycation adsorbed to a SiO2 support. We have successfully monitored the hybridization between the ssDNA surfaces and their complementary strands in solution and have also shown that DNA multilayer formation can be observed using denatured calf thymus DNA. We have furthermore established that the ssDNA and dsDNA surfaces show different binding characteristics to ethidium bromide, a common dsDNA intercalator, demonstrating the potential use of such surfaces to identify possible DNA ligands.  相似文献   

3.
We have studied the activation kinetics of zinc sulfide (ZnS) using silver as an activator by a quartz crystal microbalance with dissipation (QCM-D). The zinc sulfide coating on QCM-D sensor was shown to have similar crystallographic structure, composition, and surface properties as nature sphalerite through the characterization of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and xanthate adsorption measurement using QCM-D. The activation of ZnS sensor by silver was confirmed by the mass increase in ZnS sensor coupled with subsequent xanthate adsorption during QCM-D measurement, the change of surface wettability, and the presence of Ag(2)S on the surface. Two distinct stages on the silver uptake vs. time curve were identified and fitted well by a logarithmic function for the initial stage and a parabolic law in the later stage, which agrees with the two-stage zinc-silver reaction kinetics reported previously. Argon sputtering followed by XPS measurement on the ZnS surface demonstrated the penetration of silver into the bulk ZnS after activation. The present study is the first of its kind to apply the QCM-D technique to investigate sphalerite activation, which introduces a new in situ approach to investigate surface adsorption and activation in many mineral processes and surface modifications.  相似文献   

4.
Reversible addition-fragmentation chain transfer polymerization (RAFT) was firstly reported in 1998 by Rizzardo1. This technique provided the possibility to synthesize polymers with controlled molecular weight, narrow molecular weight distribution, and we…  相似文献   

5.
The temperature-induced structural changes of a thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) layer grafted onto a silica substrate were investigated in aqueous solution using an atomic force microscope (AFM) and a quartz crystal microbalance with dissipation (QCM-D). A PNIPAM layer was grafted onto the silicon wafer surface by free radical polymerization of NIPAM to obtain a high molecular weight polymer layer with low-grafting density overall. By AFM imaging, the transition of the grafted PNIPAM chains from a brush-like to a mushroom-like state was clearly visualized: The surface images of the plate were featureless at temperatures below the LCST commensurate with a brush-like layer, whereas above the LCST, a large number of domain structures with a characteristic size of approximately 100 nm were seen on the surface. Both frequency and dissipation data obtained using QCM-D showed a significant change at the LCST. Analysis of these data confirmed that the observed PNIPAM structural transition was caused by a collapse of the brush-like structure as a result of dehydration of the polymer chains.  相似文献   

6.
A novel process to produce homo‐ and copolymers by RAFT polymerization in emulsion is presented. It is known that RAFT‐controlled radical polymerization can be conducted in emulsion polymerization without disturbing the radical segregation characteristic of this process, thus leading to polymerization rates identical to those encountered in the corresponding nonliving systems. However, RAFT agents are often characterized by very low water solubility and, therefore, they diffuse very slowly from the monomer droplets, where they are initially solubilized, to the reaction loci, i.e., the polymer particles. Accordingly, when used in emulsion polymerization, they are practically excluded from the reaction. In this work, we show that cyclodextrins, well‐known for their ability to form water‐soluble complexes with hydrophobic molecules, facilitate the transport across the H2O phase of the RAFT agent to the polymer particles. Accordingly, chains grow through the entire process in a controlled way. This leads to the production of low‐polydispersity polymers with well‐defined structure and end functionalities as well as to the possibility of synthesizing block copolymers by a radical mechanism.  相似文献   

7.
Four bridged bis(beta-cyclodextrin)s tethered by different lengths of oligo(ethylenediamine)s have been synthesized and their inclusion complexation behavior with selected substrates elucidated by circular dichroism spectroscopy and fluorescence decay. In order to study their binding ability quantitatively, inclusion complexation stability constants with four dye guests, that is, brilliant green (BG), methyl orange (MO), ammonium 8-anilino-1-naphthalenesulfonic acid (ANS), and sodium 6-(p-toluidino)-2-naphthalenesulfonate (TNS), have been determined in aqueous solution at 25 degrees C with spectrophotometric, spectropolarimetric, or spectrofluorometric titrations. The results obtained indicate that the two tethered cyclodextrin units might cooperatively bind to a guest, and the molecular binding ability toward model substrates, especially linear guests such as TNS and MO, could be extended. The tether length plays a crucial role in the molecular recognition, the binding constants for ANS and TNS decrease linearly with an increase in the tether length of dimeric cyclodextrin. The Gibbs free energy changes (-deltaGo) for the unit increment per ethylene are 0.99 kJ mol(-1) for ANS and 0.44 kJmol(-1) for TNS, respectively. On the other hand, the presence of a copper(II) ion in metallobis(beta-cyclodextrin)s oligo(ethylenediamino) tethers enhances not only the original binding ability, but also the molecular selectivity through triple or multiple recognition, as compared with the parent bis(beta-cyclodextrin)s.  相似文献   

8.
In this report, we demonstrated a novel efficient post-modification route for preparation of smart hybrid gold nanoparticles with poly(4-vinylpyridine) (P4VP) based on RAFT and click chemistry. A new azide terminated ligand was first synthesized to modify gold nanoparticles by ligand exchange reaction, and then click reaction was used to graft alkyne terminated P4VP which was prepared by RAFT onto the surface of gold nanoparticles. The functionalized hybrid gold nanoparticles were characterized by TEM, FTIR, and XPS etc. The results indicated that the P4VP was successfully grafted onto the surface of gold nanoparticles by click reaction. The surface grafting density was calculated to be about 6 chains/nm2. In addition, the hybrid gold nanoparticles showed a pH responsive phenomenon as the pH value changed around 5.  相似文献   

9.
An achiral nonlinear optical chromophore with a "remote functionality" that can act as a ligand is developed on the basis of 4-nitroaniline derivatized with pyridine. The molecules are assembled through complexation with simple achiral zinc(II) salts and the H-bond network mediated by the counterions, to generate noncentrosymmetric materials exhibiting optical second harmonic generation (SHG). The crystal structures of the new complexes are determined; the counterion strongly influences the ligand orientations and lattice structure. SHG of the microcrystalline materials is investigated. Correlation between the structure and SHG is rationalized using semiempirical quantum chemical estimation of the hyperpolarizabilities of molecules and molecular clusters. The metal complexation plays a significant role in molecular assembly but affects the SHG very little, enabling simplified analysis of the bulk property in terms of molecular responses. Organization of remote functionalized molecules by metal ion complexation thus offers a convenient approach to the rational design of quadratic NLO materials.  相似文献   

10.
A methodology for the synthesis of well‐defined poly(ethylene oxide)‐block‐poly(vinyl alcohol) (PEO‐b‐PVA) and PVA‐b‐PEO‐b‐PVA polymers was reported. Novel xanthate end‐functionalized PEOs were synthesized by a series of end‐group transformations. They were then used to mediate the reversible addition–fragmentation chain transfer polymerization of vinyl acetate to obtain well‐defined poly(ethylene oxide)‐b‐poly(vinyl acetate) (PEO‐b‐PVAc) and PVAc‐b‐PEO‐b‐PVAc. When these block copolymers were directly hydrolyzed in methanol solution of sodium hydroxide, polymers with brown color were obtained, which was due to the formation of conjugated unsaturated aldehyde structures. To circumvent these side reactions, the xanthate groups were removed by adding a primary amine before hydrolysis and the products thus obtained were white powders. The polymers were characterized by gel permeation chromatography, 1H NMR spectroscopy and FT‐IR. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1901–1910, 2009  相似文献   

11.
The template polymerization of N-vinylpyrrolidone (NVP) along syndiotactic poly(methacrylic acid) (s1-PMAA) templates has been studied by differential scanning calorimetry (DSC) using the scanning as well as the isothermal technique. The resulting Arrhenius plot covers a temperature range between 65 and 120°C and two parts can be distinguished. Below 80°C the overall activation energy, Ea, and entropy ΔS, are 76 kJ · mol?1 and ?79 J · mol?1 · K?1 respectively, in excellent agreement with previous dilatometric results. These values differ slightly from those of the blank polymerization leading to rate enhancement by a factor of only two. The small difference in activation parameters is explained by the occurrence of desolvation of st-PMAA chains during propagation of the polyvinylpyrrolidone (PVP) radicals along the template. Above 80°C, the decreasing tendency to form complexes between PVP and st-PMAA results in a decreasing template effect and a gradual change of apparent Ea and ΔS values towards those of the blank polymerization. Similar results were obtained with atactic and isotactic PMAA templates, but smaller rate enhancements were observed due to weaker complex formation.  相似文献   

12.
D-Glucose has been converted into its functionalized derivative 7b a synthon (C1–C6) of the carbomycin macrolide antibiotics.  相似文献   

13.
Aromatic xanthates and dithiocarbamates were used as chain‐transfer agents (CTAs) in reversible addition–fragmentation chain‐transfer (RAFT) polymerizations of ethylene under milder conditions (≤80 °C, ≤200 bar). While detrimental side fragmentation of the intermediate radical leading to loss of living chain‐ends was observed before with alkyl xanthate CTAs, this was absent for the aromatic CTAs. The loss of living chain‐ends was nevertheless detected for the aromatic xanthates via a different mechanism based on cross‐termination. Narrow molar‐mass distributions with dispersities between 1.2 and 1.3 were still obtained up to number average molar masses Mn of 1000 g mol?1. The loss of chain‐ends was minor for dithiocarbamates, yielding polyethylene up to Mn=3000 g mol?1 with dispersities between 1.4 and 1.8. While systems investigated showed significant rate retardation, the dithiocarbamates are the first CTAs giving polyethylene with a high livingness via RAFT polymerization.  相似文献   

14.
Selected iron(II) complexes (ferrocene, ferrocenylboronic acid, hexacyanoferrate(II)) have been used as photosensitizers of titanium dioxide. Various types of electronic interactions between the surface complex and the semiconducting support are reflected in different yields of photocurrent generated upon visible-light irradiation and different efficiencies of the photosensitization effect. The studied systems, showing the photocurrent switching upon changes of electrode potential and energy of photons (the PEPS effect), are good models of simple photoelectrochemical logic devices. The mechanism of photosensitization and photocurrent switching is discussed with respect to the type of surface-complex-support interaction. Quantum-mechanical calculations support the proposed mechanisms.  相似文献   

15.
16.
The synthesis and modification of thiol functionalized poly(meth)acrylates using a straightforward reaction concept that consists of an enzymatically catalyzed monomer synthesis, free radical polymerization and post-polymerization modification is presented. The well-known enzymatic transacylation of methyl acrylate and methyl methacrylate that runs under mild and environmentally friendly conditions was used to synthesize thiol protected acrylic and methacrylic monomers. Upon free radical polymerization and subsequent removal of protection groups, polymers with pendant thiol groups are obtained, which, in turn, can react in situ with Michael acceptors to form thiol-ene reaction products. The exceptional advantage of the proposed method is that upon removal of the enzyme from the monomer mixture, the polymerization, deprotection of thiols and subsequent Thio-Michael-type addition reaction can be conducted in one pot without purification of the intermediate products. Furthermore, the different reactivities of acetyl and benzoyl protection groups in lipase catalyzed reactions are discussed.  相似文献   

17.
The synthesis and coordination chemistry of a series of dianionic bis(amido)silyl and bis(amido)disilyl, [NSiN] and [NSiSiN], chelates with N-bound aryl or sterically modified triarylsilyl (SiAr(3)) groups is reported. In order to provide a consistent comparison of the steric coverage afforded by each ligand construct, various two-coordinate N-heterocyclic germylene complexes featuring each ligand set were prepared and oxidative S-atom transfer chemistry was explored. In the cases where clean oxidation transpired, sulfido-bridged centrosymmetric germanium(IV) dimers of the general form [LGe(μ-S)](2) (L = bis(amidosilyl) ligands) were obtained in lieu of the target monomeric germanethiones with discrete Ge═S double bonds. These results indicate that the reported chelates possess sufficient conformational flexibility to allow for the dimerization of LGe═S units to occur. Notably, the new triarylsilyl groups (4-RC(6)H(4))(3)Si- (R = (t)Bu and (i)Pr) still offer considerably expanded degrees of steric coverage relative to the parent congener, -SiPh(3,) and thus the use of substituted triarylsilyl groups within ligand design strategies should be a generally useful concept in advancing low-coordination main group and transition-metal chemistry.  相似文献   

18.
A poly(p-methylstyrene)-block-polyisoprene-block-poly(p-methyl styrene) thermoplastic elastomer was synthesized via anionic polymerization using n-butyllithium as an initiator. The sequential method used for the synthesis has resulted in a nearly monodispersed polymer with a polydispersity of 1.02. Chlorination of such formed copolymer using aqueous sodium hypochlorite was then conducted in a variety of solvents. At a 6.9 mol ratio of sodium hypochlorite to monomer unit, chlorination occurred via a substitution reaction instead of an addition reaction, regardless of the type of solvent used. Nevertheless, the location at which the chlorine was incorporated into the polymer varied with the type of solvent used. The chlorination occurred primarily in the two poly(p-methylstyrene) end blocks when conducted in n-hexane solvent. However, only the polyisoprene middle block was chlorinated in chloroform. All three blocks could be chlorinated when the reaction was carried out in methylene chloride. The microstructure of the chlorinated molecules were analyzed using 1H-NMR and 13C-NMR, and the degree of chlorination varied from 7 to 50% of constituting monomer units. A significantly higher degree of chlorination occurred when the reaction was conducted in methylene chloride due to its high dielectric constant. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2969–2980, 1997  相似文献   

19.
《Supramolecular Science》1998,5(3-4):405-410
In water, poly(2-vinyl-4,6-diamino-1,3,5-triazine)(PVDAT) selectively binds the derivatives of thymine and uracil through the formation of three hydrogen bonds with the diaminotriazine (DAT) residues. The nucleotides and dinucleotides are bound much more strongly than are nucleic acid bases, due to the additional interactions of their phosphates with the DAT residues. The binding constant of the thymidine 5′-monophosphate-PVDAT adduct (5400 M-1) is one of the largest values ever reported for the artificial receptors in protic solvents. In contrast, cytosine and its monophosphate are hardly bound to PVDAT. A water-soluble vinyldiaminotriazine–acrylamide copolymer also forms hydrogen bonds with thymine in water, whereas the corresponding monomers do not. A polymer effect is predominantly important for the molecular recognition through hydrogen bonding in water.  相似文献   

20.
Poly(vinyl acetate)-b-polystyrene, poly(vinyl acetate)-b-poly(methyl acrylate) and poly(vinyl acetate)-b-poly(methyl methacrylate) block copolymers with low polydispersity (M(w)/M(n) < 1.25) were prepared by successive reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) employing a bromoxanthate iniferter (initiator-transfer agent-terminator).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号