首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
沈瑜  侯中怀  辛厚文 《中国物理快报》2008,25(11):3875-3878
The synchronization and pattern dynamics of coupled logistic maps on a certain type of complex network, constructed by adding random shortcuts to a regular ring, is investigated. For parameters where an isolated map is fully chaotic, the defect turbulence, which is dominant in the regular network, can be tamed into ordered periodic patterns or synchronized chaotic states when random shortcuts are added, and the patterns formed on the complex network can be grouped into two or three branches depending on the coupling strength.  相似文献   

2.
To reveal the dynamics of neuronal networks with pacemakers, the firing patterns and their transitions are investigated in a ring HR neuronal network with gap junctions under the control of a pacemaker. Compared with the situation without pacemaker, the neurons in the network can exhibit wrious firing patterns as the externed current is applied or the coupling strength of pacemaker varies. The results are beneficial for understanding the complex cooperative behaviour of large neural assemblies with pacemaker control.  相似文献   

3.
Pattern synchronization in a two-layer neuronal network is studied. For a single-layer network of Rulkov map neurons, there are three kinds of patterns induced by noise. Additive noise can induce ordered patterns at some intermediate noise intensities in a resonant way; however, for small and large noise intensities there exist excitable patterns and disordered patterns, respectively. For a neuronal network coupled by two single-layer networks with noise intensity differences between layers, we find that the two-layer network can achieve synchrony as the interlayer coupling strength increases. The synchronous states strongly depend on the interlayer coupling strength and the noise intensity difference between layers.  相似文献   

4.
Properties of the duration of long lasting transient oscillations in ring networks of unidirectionally coupled sigmoidal neurons are derived with a kinematical model of traveling waves in the network. The duration of the transient oscillations occurring from random initial conditions increases exponentially as the number of neurons. The distribution of the duration is approximated by a power-law function when the number of neurons is large. Further, transient oscillations which oscillate about one thousand cycles before ceasing are observed in a network of forty neurons in circuit experiments though the duration decreases owing to random biases.  相似文献   

5.
We study the collective temporal coherence of a small-world network of coupled stochastic Hodgkin-Huxley neurons. Previous reports have shown that network coherence in response to a subthreshold periodic stimulus, thus subthreshold signal encoding, is maximal for a specific range of the fraction of randomly added shortcuts relative to all possible shortcuts, p, added to an initially locally connected network. We investigated this behavior further as a function of channel noise, stimulus frequency and coupling strength. We show that temporal coherence peaks when the frequency of the external stimulus matches that of the intrinsic subthreshold oscillations. We also find that large values of the channel noise, corresponding to small cell sizes, increases coherence for optimal values of the stimulus frequency and the topology parameter p. For smaller values of the channel noise, thus larger cell sizes, network coherence becomes insensitive to these parameters. Finally, the degree of coupling between neurons in the network modulates the sensitivity of coherence to topology, such that for stronger coupling the peak coherence is achieved with fewer added short cuts.  相似文献   

6.
陈良  陆君安 《中国物理快报》2007,24(7):1853-1856
We present a network model with a new coupled scheme which is the generalization of drive-response systems called a drivingly coupled network. The synchronization of the network is investigated by numerical simulations based on Lorenz systems. By calculating the largest transversal Lyapunov exponents of such network, the stable and unstable regions of synchronous state for eigenvalues in such network can be obtained and many kinds of drivingly coupled arrays based on Lorenz systems such as all-to-all, star-shape, ring-shape and chain-shape networks are considered.  相似文献   

7.
We study the spatial dynamics of spiral waves in noisy Hodgkin-Huxley neuronal ensembles evoked by different information transmission delays and network topologies. In classical settings of coherence resonance the intensity of noise is fine-tuned so as to optimize the system's response. Here, we keep the noise intensity constant, and instead, vary the length of information transmission delay amongst coupled neurons. We show that there exists an intermediate transmission delay by which the spiral waves are optimally ordered, hence indicating the existence of delay-enhanced coherence of spatial dynamics in the examined system. Additionally, we examine the robustness of this phenomenon as the diffusive interaction topology changes towards the small-world type, and discover that shortcut links amongst distant neurons hinder the emergence of coherent spiral waves irrespective of transmission delay length. Presented results thus provide insights that could facilitate the understanding of information transmission delay on realistic neuronal networks.  相似文献   

8.
We investigate bifurcations in neuronal networks with a hub structure. It is known that hubs play a leading role in characterizing the network dynamical behavior. However, the dynamics of hubs or star-coupled systems is not well understood. Here, we study rather subnetworks with a star-like configuration. This coupled system is an important motif in complex networks. Thus, our study is a basic step for understanding structure formation in large networks. We use the Morris-Lecar neuron with class I and class II excitabilities as a node. Homogeneous (coupling the same class neurons) and heterogeneous (coupling different class neurons) cases are considered for both excitatory and inhibitory coupling. For the homogeneous system class II neurons are suitable for achieving both complete and cluster synchronization in excitatory and inhibitory coupling, respectively. For the heterogeneous system with inhibitory coupling, the class I hub neuron has a wider parameter region of synchronous firings than the class II hub. Moreover, the class I hub neuron with the excitatory synapse gives rise to bifurcations of synchronized states and multi-stability (coexistence of a few different states) is observed.  相似文献   

9.
In this Letter, singular hybrid coupled systems are introduced to describe complex networks with a special class of constraints. The synchronization problem of singular hybrid coupled systems with time-varying nonlinear perturbation is investigated. A sufficient condition for global synchronization is derived based on the Lyapunov stability theory. The singular system is regular and impulse free. Finally, a numerical example is provided to illustrate the effectiveness of the proposal conditions.  相似文献   

10.
Zhi Li  Ju-Jang Lee 《Physics letters. A》2008,372(8):1228-1235
Global exponentially synchronization in asymmetrically coupled networks is investigated in this Letter. We extend eigenvalue based method to synchronization in symmetrically coupled network to synchronization in asymmetrically coupled network. A new stability criterion of eigenvalue based is derived. In this criterion, both a term that is the second largest eigenvalue of a symmetrical matrix and a term that is the largest value of sum of column of asymmetrical coupling matrix play a key role. Comparing with existing results, the advantage of our synchronization stability result is that it can analytical be applied to the asymmetrically coupled networks and overcome the complexity on calculating eigenvalues of coupling asymmetric matrix. Therefore, this condition is very convenient to use. Moreover, a necessary condition of this synchronization stability criterion is also given by the elements of the coupling asymmetric matrix, which can conveniently be used in judging the synchronization stability condition without calculating the eigenvalues of coupling matrix.  相似文献   

11.
We investigate the chaotic phase synchronization in a system of coupled bursting neurons in small-world networks. A transition to mutual phase synchronization takes place on the bursting time scale of coupled oscillators, while on the spiking time scale, they behave asynchronously. It is shown that phase synchronization is largely facilitated by a large fraction of shortcuts, but saturates when it exceeds a critical value. We also study the external chaotic phase synchronization of bursting oscillators in the small-world network by a periodic driving signal applied to a single neuron. It is demonstrated that there exists an optimal small-world topology, resulting in the largest peak value of frequency locking interval in the parameter plane, where bursting synchronization is maintained, even with the external driving. The width of this interval increases with the driving amplitude, but decrease rapidly with the network size. We infer that the externally applied driving parameters outside the frequency locking region can effectively suppress pathologically synchronized rhythms of bursting neurons in the brain.  相似文献   

12.
The effect of diversity on a system of coupled threshold elements is investigated, where each element is driven by a common periodic signal. Diversity is introduced to the system by assuming that the thresholds of all units are heterogeneous, e.g. the thresholds follow a Gaussian or other distribution. A combined numerical and analytical approach shows that the response of the system to the input signal is maximized at a moderate value of the diversity amplitude, which is similar to the well-known stochastic resonance phenomenon induced by noise. Our findings exhibit that the diversity, a kind of spatial disorder, may play a similar role to noise as a kind of temporal disorder.  相似文献   

13.
We investigate the collection behaviour of coupled phase oscillators on Newman-Watts small-world networks in one and two dimensions. Each component of the network is assumed as an oscillator and each interacts with the others following the Kuramoto model We then study the onset of global synchronization of phases and frequencies based on dynamic simulations and finite-size scaling. Both the phase and frequency synchronization are observed to emerge in the presence of a tiny fraction of shortcuts and enhanced with the increases of nearest neighbours and lattice dimensions.  相似文献   

14.
Qingbai Zhao  Hongbo Feng  Danni Sui 《Physica A》2008,387(23):5952-5957
The mammalian cortices show an specific architecture close to the optimum, represented by the high clustering, short processing steps and short wiring length. What are the key factors that influence the layout of neural connectivity networks? Here a model to investigate the conditions leading to the small-world cortical networks with minimal global wiring is presented. The essential factors in this model are the introductions of the unequal number distribution of heterogeneous neurons and two connection mechanisms, the preferential attachment to neurons with large spatial coverage (PANLSC) and distance preference. Outcomes show that the specific architecture close to the optimum can only result from the PANLSC when the number distribution of neurons with diverse spatial coverage is highly unequal. This suggests the PANLSC may be an important connection mechanism in cortical systems.  相似文献   

15.
In this Letter, we study the exponential stochastic synchronization problem for coupled neural networks with stochastic noise perturbations. Based on Lyapunov stability theory, inequality techniques, the properties of Weiner process, and adding different intermittent controllers, several sufficient conditions are obtained to ensure exponential stochastic synchronization of coupled neural networks with or without coupling delays under stochastic perturbations. These stochastic synchronization criteria are expressed in terms of several lower-dimensional linear matrix inequalities (LMIs) and can be easily verified. Moreover, the results of this Letter are applicable to both directed and undirected weighted networks. A numerical example and its simulations are offered to show the effectiveness of our new results.  相似文献   

16.
This Letter investigates the problem of synchronization in complex dynamical networks with time-varying delays. A periodically intermittent control scheme is proposed to achieve global exponential synchronization for a general complex network with both time-varying delays dynamical nodes and time-varying delays coupling. It is shown that the sates of the general complex network with both time-varying delays dynamical nodes and time-varying delays coupling can globally exponentially synchronize with a desired orbit under the designed intermittent controllers. Moreover, a typical network consisting of the time-delayed Chua oscillator with nearest-neighbor unidirectional time-varying delays coupling is given as an example to verify the effectiveness of the proposed control methodology.  相似文献   

17.
Zhi Li  Il Hong Suh 《Physica A》2009,388(12):2526-2534
Based on high gain feedback control theory, robust adaptive synchronization of dynamical network is investigated in this paper. When the non-linear coupling functions are unknown but with unknown bounded, some fairly simple robust adaptive scalar feedback controllers are derived. The key idea is that a time-varying gain parameter is introduced in designing controllers which can guarantee that the states of uncertain coupled dynamical networks robust adaptive asymptotically synchronize with each other. Numerical simulation is given to validate the proposed theoretical result.  相似文献   

18.
The Hodgkin-Huxley (H-H) neuron model driven by stimuli just above threshold shows a noise-induced response delay with respect to time to the first spike for a certain range of noise strengths, an effect called “noise delayed decay” (NDD). We study the response time of a network of coupled H-H neurons, and investigate how the NDD can be affected by the connection topology of the network and the coupling strength. We show that the NDD effect exists for weak and intermediate coupling strengths, whereas it disappears for strong coupling strength regardless of the connection topology. We also show that although the network structure has very little effect on the NDD for a weak coupling strength, the network structure plays a key role for an intermediate coupling strength by decreasing the NDD effect with the increasing number of random shortcuts, and thus provides an additional operating regime, that is absent in the regular network, in which the neurons may also exploit a spike time code.  相似文献   

19.
Robust impulsive synchronization of complex delayed dynamical networks   总被引:1,自引:0,他引:1  
This Letter investigates robust impulsive synchronization of complex delayed dynamical networks with nonsymmetrical coupling from the view of dynamics and control. Based on impulsive control theory on delayed dynamical systems, some simple yet generic criteria for robust impulsive synchronization are established. It is shown that these criteria can provide a novel and effective control approach to synchronize an arbitrary given delayed dynamical network to a desired synchronization state. Comparing with existing results, the advantage of the control scheme is that synchronization state can be selected as a weighted average of all the states in the network for the purpose of practical control strategy. Finally, numerical simulations are given to demonstrate the effectiveness of the proposed control methodology.  相似文献   

20.
Encoding information by firing patterns is one of the basic neural functions, and synchronization is important collective behaviour of a group of coupled neurons. Taking account of two schemes for encoding information (that is, rate coding and temporal coding), rhythm synchronization of coupled neurons is studied. There are two types of rhythm synchronization of neurons: spike and burst synchronizations. Firstly, it is shown that the spike synchronization is equivalent to the phase synchronization for coupled neurons. Secondly, the similarity function of the slow variables of neurons, which have relevant to the bursting process, is proposed to judge the burst synchronization. It is also found that the burst synchronization can be achieved more easily than the spike synchronization, whatever the firing patterns of the neurons are. Hence the temporal encoding scheme, which is closely related to both the spike and burst synchronizations, is more comprehensive than the rate coding scheme in essence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号